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ASYMPTOTIC ANALYSIS OF A PARABOLIC
SEMI-LINEAR PROBLEM WITH NONLINEAR
BOUNDARY MULTI-PHASE INTERACTIONS IN A
PERFORATED DOMAIN

T.A. Mel'nyk? Olena A. Sivak'

Abstract

We consider a parabolic semilinear problem with rapidly oscillating coefficients in a do-
main 2. that is e—periodically perforated by small holes. The holes are divided into two
e—periodical sets depending on the boundary interaction at their surfaces. Two different
nonlinear Robin boundary conditions oc(ue) + ekm(ue) = Eggm), m = 1,2, are given on the
corresponding boundaries of the small holes. The asymptotic analysis of this problem is made
as € — 0, namely a convergence theorem is proved without using extension operators, the
asymptotic approximation for the solution is constructed and the corresponding error estimate

is deduced.

AMS Subject Classification: 35B27, 35B40, 35K60.

Key Words and Phrases: Homogenization, asymptotic approximation, parabolic semi-linear
problem, nonlinear boundary conditions, perforated domain.

1 Introduction and statement of the problem

The homogenization theory is at present a well-developed field of mathematics which includes a
large variety of both theoretical and applied problems (see for example [1]-[8]). One class of the
homogenization theory is boundary-value problems in perforated domains. In recent years a rich
collection of new results on asymptotic analysis of boundary-value problems in perforated domains
is appeared (see for example [9]-[42]).

The classical method proposed by E. Khruslov [43] and D. Cioranescu and J. Saint Jean Paulin
[44] is based on a special bounded extension of solutions in Sobolev spaces. It was established by
V. Zhikov [30], [40] that the homogenization results can be obtained without using the extension
technique in Sobolev spaces in periodically perforated domains. It should be mentioned the paper
[13], where the homogenization results for an elliptic problem with a nonlinear boundary condition
in a perforated domain were obtained with the help of a new unfolding method that does not
need any extension operators as well. Also we quote first papers [45]-[51], where boundary-value
problems involving third-type boundary conditions, nonuniform Neumann and Steklov conditions
at the boundary of the holes of perforated domains were studied.

The recent development of reaction diffusion systems in biology, ecology and biochemistry, and
the traditional importance of these systems in physics, heat-mass transfer and engineering lead to
extensive study in various aspects of nonlinear boundary-value problems in perforated domains. In
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the presented paper we consider a parabolic semilinear problem with rapidly oscillating coefficients
in a domain €2, that is e—periodically perforated by small holes. The holes are divided into two
e—periodical sets depending on the boundary interaction at their surfaces. Two different nonlinear
Robin boundary conditions o (ue) + ekm (ue) = sggm), m = 1,2, are given on the corresponding
boundaries of the small holes. Using the Zhikov’s approach and the approach of the papers [10, 52],
a convergence theorem is proved, the asymptotic approximation for the solution is constructed and
the corresponding error estimate is deduced.

Statement of the problem. Let B be a finite union of smooth disjoint nontangent domains
strictly lying in the unit square

O:={eR": 0<& <1, i=1,n}

In an arbitrary way, we divide B into two sets

N1 N2
BW = JBY and B® =[] BY.
k=1 k=1

Also we introduce the following notations

Qo=0\B, B™ =] _(z+B™),

ZEL™
B :=eB™ = {z eR": e 'z e B™Y, m=1,2,
where ¢ is a small parameter. Let 2 be a smooth bounded domain in R™. Define the following

perforated domain . = Q\ (Bél) U Béz)) (see Fig.1) and require the domain €2, to be a domain with
the Lipschitz boundary. Denote I, = 9QN Q. and Eé’”) = QﬂaBém), m=12, == Egl) UE&Q).
Let a;;(€), € € R™, i,j = 1,n, be smooth 1—periodic functions such that

1) Vi,j=1,...,n, YE€R": ay(§) = a(§),
2) Js,500>0 VEER” VpeR™: %1|17|2 < ai;(&)min; < %2|77\2. (1)

Remark 1. Here and in the sequel we adopt the Einstein convention of summation over repeated
indexes.

Let f-, fo, g™, g(()m) be given functions such that f., fo € L?(0,T; L*(Q)), gém),g(()m) € L*(0,T; H} (%))
and

f€—>f0 in L2(0,T7L2(Q))7

w

(m) ™ 12(0.7 HY _ (2)
9" — gy in (0,T; Hy(2)), m=1,2



for some fixed time T > 0.
The given functions h : R — R, k,, : R - R, m = 1,2, are Lipschitz continuous (it is
equivalent that h, k,, € W,2*(R)) and such that

loc

Jep >0 Fea>0: e <h' <ecy, 1<k, <cy, ae. inR (m=1,2). (3)

Remark 2. In what follows we will use the following inequalities which are simply consequences

of (3) (m=1,2):
at? +h(0)t <h(O)t<cot> +h(0)t, 1t 4k (0)t <kp (1)t <ot + K, (0)2, (4)
Ih@)] < [RO)] +eslt],  |km(D)] < |km(0)] +cslt]  VE€R. (5)

We consider the following initial/boundary-value semilinear problem with nonlinear boundary
condition

Osue — [/s(us) + h(ua) = fe in Q. x (0,7),
oe(ue) +ery(us) = sgél) on = x (0,7),
oe(ue) + era(ue) = eg? on =P x (0,7), (6)
u. = 0 on T'. x(0,T),
ue(z,0) = 0 in Q

where L. (uz) = Oy, (afj(x)axj ue(o:,t)) , oe(ue) = afj(x)amjue(x,t) Vi, afj(x) = ajj (%) , Op,u =
2 (11(%),...va(%)) is the outward normal.

Recall that a function u. from the Sobolev space L?(0,T; H'(,T.)), where H'(Q.,T.) =
{u e HY(Q.) : ulr. = 0}, is a weak solution to problem (6) if the following integral identity

T
/ (/ usatwder/ afjazjusazi¢dx+/ h(ue ) dx
0 Q. Q. Qe

2 T 2
+smz::1 /: " km(ug)wdsw> dt = /0 ( . fgwxﬂ; ¥ wdsz> dt. (7)

holds for any function ¢ € L2(0,T; H(Q.,T.)) N H(0,T; L*()), ¥(z,T) = 0.

Our aim is to study the asymptotic behavior of the weak solution to problem (6) as e — 0, i.e.,
when the number of the holes infinitely increases and their diameters decreases to zero. It should
be noted that the limit process is accompanied by the perturbed coefficients in the nonlinear
boundary conditions on the lateral sides of the holes and we study the influence of these factors
on the asymptotic behavior as well.

2 Auxiliary uniform estimates

To homogenize boundary value problem (6) we use the method of integral identity which was
proposed in [54], [55]. In what follows we will often use the following identity (m = 1,2) (see [10])

E/_(mﬁOdsl’ :5/Q a5; () D, 5™ (€)== 5xi¢d$+qm/9 @da

e £

Yo € HY(Q.,T.) (8)

where wom) € H.,.(Qo) = {v e H(Qo) : v—1-periodic in &i,...,&}, m = 1,2, is weak solutions

to the following problems
Lf&(wél)) =q in Qo, ng(wéz)) =gq2 in Qo,
05( 61)) =1 on SO, U&(i/J(gZ)) —0 on SO, o)
oe(v§”) =0 on SO, oe(¥$?) =1 on @),
(05" )a, =0, (¢5”)q, = 0.



meas §(™) _ _
S(m) = aB(m)7 qm = %ﬁ@oa m = 1727 LEEW) - 851 (am(f)a§7¢(€)) B 05(1/1) == aijaﬁjw(f)yi(g)a
(v1,...,vn) — is the outward normal to S, (1), = [, ¥(£) d¢.
Due to the regularity properties of solutions to elliptic problems we have

sup [Ve™ (€)]e—=
€N,

= sup | Ve ™ (€)] < Co (m=1,2). (10)
£€Qo

We can deduce from (8) the following estimates (m=1, 2) (see [10])

s/ ©?ds, < Cy <62/ Vool da +/ ©* d:c) , (11)

= Qe Q.

/ @*dr < Cy <52/ ‘ngp|2 dx + 5/( ) 902 d5x> Vo e Hl(QEaFE)a (12)
Q. Q. Eg'm

where the constant C; and C5 are independent of e.

Remark 3. In what follows all constants {C;} and {c;} in inequalities are independent of the
parameter €.

Tt follows from (11) and (2) that

2
Ve Zle g™ L2012y < Cs- (13)

Also with the help of (11) and (12) it is easy to prove that the usual norm | - ||g1(q,) is
uniformly equivalent with respect to € to a new norm

1/2
Jullc := (/Q \Vu|2dm+5/_ u? dsw)

€

in the space H(Q.,T.), i.e., there exist constants C3 > 0, Cy > 0 and gy > 0 such that for any
e € (0,e0) and u € H'(Q.,T.) the following relations hold

Callull .y < llulle < Calluflm .- (14)

3 Existence and uniqueness of the solution to problem (6)

Using the operator method, developed for instance in [56], we can prove existence and uniqueness
of the solution of problem (6).

Theorem 1. At each fized value of € problem (6) has exactly one solutionu. € L*(0,T; H*(Q.,T.))

for which the following estimate

OIEI%XT luell L2 0.y + lluellLz0,7: 51 (00))

2 P
<Ci (1 + I fellz20,m522(00)) + \ﬁzmzl ||g§m)HLZ(O_’T;Lz(E(E””)))) <Cy (15)

)

holds, where the constants C; and Cs are independent of €, fs,g&(-m and ue.

Proof. Boundary value problem (6) can be formulated as an operator equation. To this end, we
define operator A(t) : H'(Q.,T.) — (H'(Q,T))* and functional F(t) € (H'(Qe,T:))* for a.e.
t € 10,T] as follows
2
At)u(v) = / a5;0x;u 0y v dx Jr/ h(u)vdx + ¢ Z /( ) ko (w)v dsg,
Q. Q. 1 JE!

u,v € L*(0,T; H (Q.,T.),



2
F(t)v = fevdx + € Z /( )gém)v ds, ve L*0,T; H (Qe,T.).
Q. /e

Now using these notations we rewrite equality (7) in the form of the following identity

_/OT( (), dt+/ A(t)u(v) dt = /F )) dt (16)

for any function v € L?(0,T; H*(Q:,T.)) N H(0,T; L*(Q)), v(T) = 0; here (-,-) is the inner
product in L3(€2.), v/ = 9¥.

Similar as in theorem 2.1 (p.108 [56]) one can prove that a function wu. € L?(0,T; H'(Q.,T.))
is the weak solution to problem (6) if and only if . is a solution to the following abstract Cauchy
problem (see [56, Theorem 1.5])

ui+ Aue = F in L*(0,T; (H'(Q:,T2))%), u-(0) =0, (17)
Since (L2(0, T; H (<2, I‘E)))* >~ [2(0,T; (H'(Q,T:))*), here and what follows we use A to denote

its realization

A:L?(0,T; H' (Q:,T.)) — L*(0,T; (H' (Q:,T.))*),

and the same for the functional F.
By virtue of Lemma 4.2 [56], from properties of the operator

-A(t) : Hl(Qsa Fe) - (Hl(Qaa Fa))*
it follows the corresponding properties of its realization.
Now let’s prove some properties of the operator A(t) : H*(Qe,T.) — (HY(2e,T:))*.
(1) Operator A is bounded. Using (1), (4), (5) we can prove the following inequality
H'Au”(Hl(QE,FE))* S C1 (”UHHl(QE) + 1) 5 (S H1<QE,F€).
(2) Operator A is monotone. With the help of (1), (3) we obtain

< Au— Av,u —v >

= / a;;0z; (u —v)0y, (u —v) dx + /Q (h(u) — h(v))(u —v) dz

= €

+e ), (K (1) = ke () (u — v) ds,

2
2%1/ |V(u—y)|2d1~+cl/ (uffu)zderech/( )(U*U)2dsm20,
Q. Q. = S
u,v € H'(Q.,T.). (18)

(3) Operator A is hemicontinuous. Indeed, for each u,v € H(Q,T) the real valued function

ZHA(U%»ZU)(”U):/ a;;0z; (u+ 2v) O vdm+/ h(u + zv)v dz
Qe Q.

2
+e Z /:(m) km(u + zv)v ds,
m=1"—¢

is continuous.
Thus the realization A : L2(0,T; H'(Q.,T.)) — L*(0,T; (H*(Q,T))*) is bounded, monotone
and hemicontinuous. It means the A is type M (see Lema 2.1 [56]).



(4) Operator A is coercive. Using (1), (4), (5) for each v € L(0,T; H'(Q.,T.)) we have

T T
/ Av(v)dt = / {/ a;;0z;00,,v dz +/ h(v)v dz
O O QE

Qe

2 T
+5Z/ ke (V)0 dsg dtle/ / (V|2 dz dt
— JEm 0 Ja.
T T 2
+/ / (h(O)v+c11;2)dxdt+€/ Z/( )(km(O)v+cw2)dsxdt
o Ja. 0 o1 /EM
T T T
2%1/ / |Vv|2dxdt—|h(0)|/ / |v|dmdt+cl/ / o da dt
0 Q. 0 Q. 0 Qe

T 2 T 2

o 2

5/0 Z |km(0)\/5(m) |v|dszdt+scl/0 Z/E(m>” ds, dt.
m=1 € m=1 €

Using Cauchy’s inequality with § (ab < §a® + %, a,b,6 > 0) for second and forth integrals we
deduce

T T T

/ Av(v)dt2%1/ / |VU|2dxdt—5/ / v2dx dt
0 0 Ja. o Ja.

—/T/ dedt—i—c /T/ ’UQdLL‘dt—E/Ti(S |k (0)\/ v%ds, dt
o Jo. 49 ' 0 Ja. (N — e g™ ’
T 2 T 2
|km(0)|/ / / 2
E/O mzdm o dsg dt + ecq ; mZ:l Egm)v ds, dt. (19)

Set § = ¢1 and 6, such that ¢y — 6|k (0)] > 0. Then taking (14) and measZ"™ ~ O(s~1) into
account, we deduce from (19) that

T T
/ Av(v)dtk@/ (/ |Vol|? dac—l—s/ vzdsz) dt —c3
0 0 Q. E

T

T
= o4 / lol2dt — 5 > cq / 1ol d — €5 = collo]2a0.um1 0.y — ©5-
0 0

Now it follows from Corollary 4.1 [56] that problem (17) has a unique solution.
It remains to prove inequality (15). For this we multiply the first equation from (6) by u.

and integrate over Q. x (0,¢). Then integrating by parts and taking into account fot U Opue dt =
FuZ(z,t), we obtain

1 t t
- / u?(z,t) do + / / ;0 ue O, ue dz dt + / / h(ue)ue dx dt
2 Ja. o Ja. o Ja.

2 t ‘
+€;A /Eé’”) km(ua)ug dSldt = /0 0. feua dx dt
2

t
+€ Z /0 /:(m) g(gm)u‘E ds, dt.

m=1

Due to (1), (4) we get

t t
/ ug(%t)dx—&—cl/ </ |Vu5|2dx+5/ u? dsz> dt—i—ecz/ / Ue dSy dt
Q. 0 Q. Ze 0 JE.

10

N =



t t 2 t
+c3 / / ue dr dt < / feucdzdt + ¢ Z / / gém)ug ds, dt.
0 Ja. 0 Ja. —1Jo JE.

Taking into account (14) the previous inequality we rewrite as follows

1 t t
7/ u?(m,t)dz—&—@;/ ||u5||?{1(ﬂg)dt§626// |ue| dsg dt
2 Qe 0 0 J=.
t t 2 t
+cS// |u5|dmdt+// fgugdxdt—i—st// g™, ds, dt.  (20)
0 JO. 0 JO. me1 70 J=.

Using Hoélder’s inequality and (14), we deduce from (20) the following inequality

1

5/9 Ug(ﬂfvt) dr + C4||u€||2L2(0,t;H1(QE)) < C5H“6”L2(O,t;H1(Q5))

+ | fell 20,6522 (00)) 1ue |2 (0,6, (20))

2
+ co\/e Z Hgém)”LZ(O’t;Lz(E(am)))||u6||L2(0,t;H1(QE)) (21)
m=1

From (21) we get two inequalities

max [[ue (@, 7)lI72q,)

0<r<t
2
< 07(1 + I fellz o220 + VE D ||g§m)IILz(O,t;Lz(Egn)))) [uell 2 (0.6:1 20)) (22)
m=1
and
2
luellz20,6m1 (00)) < c8 (1 + I fellL2 0,522 (00)) + VE Z ”gém)HL2(0’t;L2(E(Em))))a (23)
m=1

from which we discover the inequality (15). O

4 Convergence theorem

In the sequel, ¥ denotes the zero-extension of a function y defined on €. into the domain Q. Also
we introduce the following characteristic function

13 T € QO)

0, ze€l \ Qo. (24)

XQo (6) = {

It is known that x5 () := X, (%) 5 Qo in L?(R2) as € — 0.

Lemma 1. Let {vc}eso be a sequence in L?(0,T; HY(Qe,T2)) uniformly bounded in € in L?(0,T; H*(Qe,T:))
and such that

fom(02) % G in L2 % (0,T)) as €—0  (m=1,2).
Then for any function ¢ € L*(0,T; H*(Qe,T:))
5/ ﬁm(vg)wdszdtﬁqm/ Cndxdt as e—0
=0 % (0,T) Qx(0,T)

(m=1,2). (25)

11



The proof for lemma is similar to the proof of Lemma 2 in [10]. By the same way, using (2),
we can prove that for any function ¢ € L*(0,T; H'(Q.,T.))

e / g ds, dt — ST g pdrdt as e —0
=) % (0,T) Qx(0,7)
(m=1,2). (26)
Consider 1—periodic solutions 7j, { = 1,...,n, to the following cell-type problems

{ Lee(T)) = —0¢,ai in Qo, o

ag(Tl) =—ayv; on S, (I1)g, =0.

It is easy to prove the existence and uniqueness of the solutions to these problems (see for instance

[7],[1],[10]).
With the help of T}, I = 1,...,n, we define the coefficients of the homogenized matrix {@;;}
by the formula

a” = <a” +alk85k >Qoa i,j S {1,2,...,71}. (28)
It is easy to see that
Qi = (g1 Oe, (& + T7) 0¢, (&5 + Tj)) o (29)

i.e., the matrix {@;;} is symmetric and it is well known that it is elliptic (see [7],[1]).

Theorem 2. For the solutions {u.}e~o to problem (6) the following convergences

Uz — |Qolvo  in  L*(0,T; L*(Q)),
o as € — 0, (30)
az; O, ue LN @ij0z,v0 N L2(0,T; L*(Q)), i=1,...,n,

hold, where vy is a unique weak solution to the problem

2
|Qo|0vvo(x,t) —ayj 8§i:cjv0(x,t)+|Qo|h(vo)+ > |S(m)\ Km (Vo (2, 1))
m=1

= 3 5 g5 (1) + 1Qol foleat), () € Q% (0,T), (31)

1
vo(z,t) =0, (x,t) €90 x(0,T),
vo(2,0) =0, z€Q,

which is called homogenized problem for (6).
Proof. 1. It follows from (15) and (3) that the values

[ue(-, )2y (for all t € [0,T]), |uecllzcaxco,ry,  IM(ue)llLz0,7:02(0)s
;s z; Ue L2(0,T;L2(2))» 1= geeey 1, Rm (Ug L2(0,T;L2(2))» m=1,4,
a5 O, uell 1 [[#6m (ue) | 1,2

are uniformly bounded with respect to €. Hence there exists a subsequence {¢'} C {e}, again
denoted by {e}, such that

Ve 0,T] ue(-t) % |Qolvo( 1) in L2(S),
Uz — vy in L2(0,T; L*(Q)),
h(us) -5 u in L2(0, T; L*(92)), (32)
af, Do 5 in L2(0,T;L2()), i =1,...,n,
km(t2) =5 Cm in L2(0,T; L2(Q)), m =1,2,

12



as ¢ — 0 where vg,v1, 0 vi,¢ = 1,...,n, (n,m = 1,2, are some functions which will be
determined in what follows.
According to Fubini’s theorem we have vy (-,t) € L?(Q2) for a.e. t € (0,T). We conclude from
(32) that v1(z,t) = |Qo|vo(z,t) for a.e. (z,t) € Q x (0,T) and consequently vy € L?(Q x (0,T)).
2. Obviously the e-periodic functions Tj (<), [ =1,...,n, defined in (27) satisfy the following

relations
aw’i (a”(g)aﬁjj—‘l(g)'f:i) + awiafl( ) =0 Vzxe Qs;
(ai;(§) 0, Ti(€) i(€) + aa(§)vi(¢))|_.=0 Vaz € Ee.

Multiplying the first relation by u.(x,t) ¢(x)n(t), where ¢ € C§°(Q), n € C*([0,T)), n(T) = 0 and
integrating over Q. x (0,T), we obtain

T
/0 /Q (aij(g) O¢, Ti (&) + ail(é“))h::% (ug Oz, 0 + gb@miue)ndx dt=0, [=1,n. (33)

Put the following test-function p(xz,t) = eTi(£)p(x)n(t), (x,t) € Q. x (0,T) into the integral
identity (7). The result is as follows

. /O ' /Q w.Th (g &(2)0n(t) dz dt

[ 0000k Tz ottt

e / / 2)0n, i (L) 0., 6(x)n(e) o di

e / [ et (£) stame) e
- mZ_ [ Lo ot (2) stamt) s
:s/OT/Q fﬂ(g) dx+a2Z/ /(m) () Ty 6 (2)(t) dsy dt.  (34)

Using (2), (3) and the identities (8), it follows from (34) that

/ / (2)0,u0¢, Ti(§)le== ¢(x)n(t) dzdt = O(e) as e—0, I=1n. (35)

Subtracting (34) from (33), we get

T
A /Q (a15(8) 9, TH(E) + au(€))leez W m O, 6 dar it

T
+/ / a5, Oz, ue pndrdt =O0(e), [=1,n. (36)
0o Jo

In (36) we regard that the functions a;; ¢, Ty +ay, [ =1,...,n, are equal to zero on B.
Let us find the limit of the first summand in the left-hand side of (36). At first we note that
the limit function vg(-,¢) in (32) belongs to H}(Q) for a.e. t € (0,T) because of the conectedness

of the domain R™ \ (BM U B®@)) (see [40]-[29]). Since (a;(€) ¢, T1(€) + au(§))vi(§) =0 at £ € S
and the vector-functions

F, = (a1j(§)3ngz(§)+a15(§),..., anj(f)afjﬂ(€)+anl(£))7 lzlv"'?”? (37)

13



are solenoidal in Qg (see (27)), their zero-extensions into O\ Qo are also solenoidal in the weak
sense, i.e.,

/Fz@) Vip(e) de = /Fl Ve dE=0 Ve R (@), I=1,...n.

Then using results by V.V. Zhikov (see [40, Lemma 2.3]), we get that

T T
lim / /Q(aij(g)aijl(g)+ail(f))|£:%a;8zi¢77d$dt= /0 /Qamamndxdt.

e—0 0

As a results, it follows from (36) in the limit passage as € — 0 that

/ /allvgﬁ ¢ndxdt+/ /’quﬁndxdt*()

Yo € C (), ne CH[0,T)), n(T) =0 (I=1,...,n),

ie.,

Yi(x,t) =@y Op,vo(x,t) for ae. (z,6) € Q2 x (0,T) (I=1,...,n). (38)

3. Using the extension by zero and the identities (8), we rewrite the integral identity (7) with
test-function p(z)n(t), where p € C5°(Q), n € C1([0,T]), n(T) = 0 in the following way

T T —
— / / Uep(z)Opn(t) do dt + / / a5; Oz ;ue O, p(2)n(t) d dt
0 Q

n(t) dzx dt

+Z( / / v) (m)( )l = (1l (112) D, e 9(2)+ i (1) O yip () () it lt

m=1
+qm/ /I’im Ue dx / /XQO fep(x)n(t) de dt

2
#3000 0 @ (0 001 4 D))
Q.

+qm/ /xQO ()dzdt)

Yo e C(Q) Ve CH([0,T)),n(T) =0. (39)

It is easy to see that the underbraced summands in (39) vanish as ¢ — 0; the first one is due
to (3), (10) and (15), the second one is due to (10) and (2).

Taking into account (32), (38) and (2), we pass to the limit in (39) as € — 0. As a result we
get the identity

~1Qol /O : /S2 vo (@) 0un(t) da di + / ' / i 0,00 0nip(@)n(t) da dt
/ / oz dxdt—i—qu/ /me t) dz dt

IQol/ /f0<P da:dt+Z|S(m)|/ / t)dzdt (40)
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for any function ¢ € C§°(Q2),n € C1([0,T]),n(T) = 0. Since the space of functions

{e(@)n(t): ¢ € C5e(Q), neC([0,T]), n(T)=0}

is dense in the space {¢ € L*(0,T; H*(Q.,T.)) N H'(0,T; L*(Q)) : | T:O} (see [57, p.301)),
identity (40) is valid for any function ¢ € L?(0,T; HY(Q., L)) H1(0, T; L*(.)) such that 9|7 =
0.

4. Multiplying the differential equation in problem (6) by u. and integrating over Q. x (0,7,

we obtain
1 T T
z / u?(z,T) dx + / / a3; O, Ue O ue dx dt + / / h(ue)ue dz dt
2 Ja. 0o Ja. 0o Ja.

2 .7
m ds; d
+e Z_:l/o /Egm)n (ue) ue ds dx

//feugdxdt—i-az:/ /(m ™, dsg dt.

With the help of (2), (8), (25), (26) and (40) we can find

1 T T
lim | - / u?(x, T) da:Jr/ / az; Oz ;e O, ue dz dt+/ / h(ue)ue dx dt
=0\ 2 Ja. 0 Ja. ' 0 Ja.

T
+ ¢ Z / /(m (ue) ue ds, dx) = g% </O o, feue dx dt
: T
+e Z / /(m) Ug dSy dt) = gl_r)r(l) (/0 /Qfeu,S dx dt

2 T
€ (m)
—|-mz::1 <6/0 /QE az; Og; Yo (f)‘gzg ((%igé Jug + gim (9%%) da dt

€

T T
+qm/ / (m)Ndxdt)> = |Qo|/ /fovodxdt
0 0o Ja
2

T |Qo|
S(m)\/ /go vo dx dt = v (x, T) dx
0o Jo Q

T T 2 T
/ / Qij0p, 000z, v0drdt  + / / pvgdrdt  + Z Gm / / Cmvodzdt.  (41)
0 Ja o Ja. — 0 Ja

5. Now it remains to determine the functions p, ¢; and (. For this we will use the method of
Browder and Minty, a remarkable technique which somehow applies to the corresponding inequality
of monotonicity to justify passing to a weak limit within a nonlinearity.

15



Thanks to (1) and (3), the inequality of monotonicity in our case reads as follows

1
3 ) (el D) (e ) e

T
+ / / az; Oy, (uE — ¢ —¢€T, (“)mpw) O, (ug — 1 — €Ty 0y, ¢) dx dt
o Ja.

’ / / (hue) — h()) (e — ) da dt

2 T
+ EW;/O /Eg"” (Km(ue) = Km () (ue — V) ds, dt > 0

Vi =o(x)n(t), ¢eC5(Q), neC((0,T]),

which is equivalent to

1 T
2 Ja. o Ja.
T 2 T
+/ / h(ue)ue dr dt + ¢ Z / / Ko (Ue) Ue ds, dx
0 Qe m=1 0 Egm)

T
+ / / 0%, (00 0+ O, Ty O, ) (Oort) + e, T, O, )
o Ja.

T T
— 2/ / a;; Op,ue Oz, d dt — 2/ / afj Op e Og, Ty Oy dx dit
0 JO ) 0o JO. ’

T
—25/0 /&:2 a/fj (8@:JU5 —6$Jw—5§JTp8Ip¢) Tqaia: d}dmdt

T

+g2/ / aijquaﬁj%wﬁixqudwdt
0 Qe

—/ el T, T) o+ v

/ / P)ue + huc)p — h(w)w) da dt

2
_ 5;1/0 /Eg’”) (Km (1) te + K (ue) ) — K (V) ) dsg dt >0

Vi = p(x)n(t), ¢ € C5 (), n e C([0,T]).

(42)

(43)

The limit of the first two lines in (43) is equal to the right-hand side in (41). The integral in

the third line can be rewritten in the form

T
/0 </QE (az’j(é) e, (& + T},) 0¢, (&g + Tq)) le=2 O, ¢(x) 0, () dac) 2 (¢) dt.

It follows from [40] that its limit equals

T
/ / Apq Oz, p qu(x)nz (t)drdt = /0 /Qapq Oz, (2, t) Op 2p(,t) d dt.

(44)

Due to (35) the second integral in the forth line vanishes. Obviously, the limits of the summands

in the fifth and the sixth lines are equal to zero and the limit in the seventh line equals

|Qo|/vo T, T) d 'QO'/¢2

16



It follows easily that the limit in the eighth line is equal

T
/0 / (1Qolh($)vo + 6 — |Qolh(w)) da dt.

The limits of the integrals in the last line can be found with the help of Lemma 1. Thus we have

|Q0|/ W(z,T)) dx+/ /a” 2; (V0 — ) Ou; (vo — ¢) du

/ / —1Qo|h(¥)) (vo — ) dz dt

+ mz_:lqm/o /Q(Cm — |Qolkm () (vo — ¢) dwdt > 0. (45)

Evidently, this inequality holds for any function v € L?(0,T; H(Q)).
Fix any 7(z,t) =p(z)n(t), o€ C5 (), ne€C([0,T]) and set ¢ := vg—A7 (A > 0) in (45). We
get

T
)\@/ T2dm+)\/ /aijaxrazrdxdt
2 Q. 0 ’ '

/ / = |Qolh(vo — A7) 7 dx dt
T
+mZ_1Qm/O /Q(Cm_|Qo|l€m(vo—)\7'))7'dxdt20,

In the limit (as A — 0) we obtain

/ /Q —|Qo|h(vo)) dedt+/ qu Cm — |Qolkm (v0)) ¥ dz > 0.

Replacing 7 by —7, we deduce that in fact quality holds above. Thus

2 2
pwx,t) + Z gmGm(,t) = |Qolh(vo) + Z ST o (v0 (2, 1))

for a.e. (x,t) € Q% (0,T). (46)

6. Returning to (40), we see that the function vy satisfies the following integral identity

T T
—|Q0|/ /’Uo@ﬂﬂdl‘dt-F/ /Ziijaxjvo&mwdxdt
0 Q 0 Q

T 2 T
+|Qo|/0 Lh(vo)¢dwdt+;|5(m)|/o /Qmm(uo)wdxdt
T 2 T
— (m) (m)
IQoI/0 /Qfolﬁda:dt—kmz_:lw |/0 /ng pdrdt (47)

for any function ¢ € L2(0,T; H(Q.,T.)) N H(0,T; L*(Q)), % (2, T) = 0. Hence vy is a weak
solution to the limit problem (31). Thanks to (3) this solution is unique.

Due to the uniqueness of the solution to problem (31), the above argumentations hold for any
subsequence of {} chosen at the beginning of the proof. O
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5 Asymptotic approximation to the solution

In this section we assume that functions fy, g(()l) and g(()Q) belong to the space C1(Q x [0,7]) and
the following fitting condition

2
1Qol R (0 +§]$Mm (0) = D" 18] g§™ (x,0) + Qol fo(x,0)
m=1

is satisfied for all x € 9. Then by virtue of Theorem 6.1 ([53, Section V]) these assumptions
together with the condition (3) provide the existence of the unique solution v to the homogenized
problem (31) from the space C%1(Q x [0,T]) and, in addition, this solution has the derivatives
9%, v0, i =1,...,n from the space L?(Q x (0,T)).

We take the following approximation

= vo(@,t) + €Tk (£) Oz, vo(, 1) (48)

to the solution u. to problem (6) Here vy is the solution to problem (31) and Ti,...,T, are
the solutions to the cell-type problems (27). Substituting the difference u. — %, in problem (6),
we find the residuals both in the differential equation and boundary conditions. Straightforward
calculations show that

at(us 766) - L. (usfﬂs) = fe—fo—h ue +h UO Z Qm n 75771(”0))

§) + air(§)0¢, T;(§) — maij) le== 024,00

AA

—ﬂ@f)mwmfmcﬁwwx (e,t) € Qe x (0,7); (49)
Oc (Ue — TUe) = —Elim(ug) +eg™ — Ff(z,t) vy, x €2 (m=1,2), (50)
where Ff (z,t) = a;;(2)Ti(%) 02 o vo(@,t), i =1,...,n, and
(ue —e)|p, = =T (£) Oz, vo(x,t), (51)
(ue = Te)|,—g = 0. (52)

Let ¢. be a smooth function in Q such that 0 < ¢, <1, @.(z) =1 if dist(z,09) < ¢, and
we(z) =0 if dist(xz,00Q) > 2e. Obviously,

IVepe| <ce ! in Q. (53)
With the help of ¢, we define the following functions
%(Jﬂvﬂ = —6(,05( )Tk ( ) 6$k1]0('r t)
and -
we(w,1) = ue(w, 1) — Ue(x,t) — Ye(x,1),  (2,t) € Qe ><(0 T).
It is easy to verify that for each t € (0,T) supp (ve) C Use = {z € Q. :  dist(z,0Q) < 2¢},

3
2

max ||¢5||LZ(Q ) < ce and ”wEHLQ(OTHl(Q )) < Cé‘% (54)

0<t<T

In addition, we is a solution to the following problem

Opwe — Le(we) = fo = fo+ h(vo) = h(ue) = 30 am (6™ () = K (v0))
+e0q, (Ff (2)) — eTh, (£) 07, vo + Le(¥e)

+ (i (&) + ain(€)0e, T (€) — 1Qol i) |e=2 924,00 n Qe x (0,7);
0e(we) =—ehim (ue) +egi™ ()~ F7 (2) v — 02 () on EI% (0, T) (m=1,2);
=0 onTI.x(0,7);

=0 on Qe x {t=0}.
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Multiplying the equation of this problem by w., then integrating by parts and subtracting
identities (8) for ¢, = Km(vo) we, m = 1,2, we get

t t
/ / w0y w, dx dt + / / az; Oz, we Oy, we do dt
0 Ja. 0

—&-/OT/QE(h(us)— (v9)) wsd$dt+52// nm Ua)—ﬁm(vo)) w, ds, dt

/ / — fo) wedacdt—kz / /(m "™ w. dsy dt
—qm// gO wgdmdt —EZ// 8§Jw0|§_zaﬂ (Km (vo) we) dx dt

T / / (035 () + @ (€006, Ty (€) — |Qo| 11y [ecz 02, vo w. du dt
0 Qe

t
- 5/ / T ()ez= 074, vo we d dt
0 Ja. : '
t t
+€/ / Ff@g;iwad:cdt—/ / a;; Ox ;e Oy, we dv dt.  (55)
0 Jo. 0 Jo.
Due to (1), (3) and (14) the left-hand side of (55) is estimated by the following way
t t
/ / weatwedxdt—i—/ / az; O We Op,we dx di
0 JQ. 0 JQ. '
t 2 t
+/ / (h(12) — h(vo))w dxdt+62/ /( (Bon(1) — o (00) e ds i
0 JQ. m=170 JE
1
> 5 [ wdedo+alvlboom e

— Co

t
//(ETkamkvo—i—z/JE)wEdmdt’—c;),a
0 Ja.

¢
/ / (ET;C Oz, Vo + ¢5)w5 ds, dt|. (56)
0o J=.

Now estimate the summands in the right-hand side of (55). Evidently,

< | fe = follz2 (oo x 0.0 llwell 22 (0,611 (20)) -

/ (fsff())wsdxdt
Q. %x(0,t)

With the help of (8), (2) and (10) we bound the second and third terms:

2

Z (5/ g™ w, ds, — qm/ g(()m) We dm)
Z(m) .

t
/O m=1 Se
[ £ il o
+Qm‘/ ggm)wgdx—/ gém)wsd:p‘)dt
Qe Q.

< 015||w5||L2 0,4;H1 () T €2 Z ||g(m)_g(()m)HL2(SZ€><(0,T))||w6HL2(O,t;H1(Q€))

m=1

dt
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and
2

/z

m=

dt

|| @) 0 b0l 0 o)) do

< 603/ |Vuol |we| dx dt 4 ecq Z / [Km (Vo) | | Vwe | dzz dt
Q. %x(0,t)

e X (0,t)

< ecs [JwellL20,01 (0.)) -

Thanks to (28) and the fact that the vector-functions (37) are weak solenoidal in the square [J, it

follows from Lemma 16.4 ([1]) that

/ (aij(ﬁ) + aik(£)0g, T;(8) — @%) =2 02,2 v0we du dt
Q. x(0,t)

< ecg ||well 220,611 (00.))-

It is easy to see that

T (€)lezz Oy, v0 we dz dt‘ < ecrl|wellp20,61 (0.))

and

e S ECg ||wsHL2(0,t;H1(QE))'

/ F{ 0y, we dx dt
Q. %x(0,t)

The last summand in (55) is estimated with the help of Lemma 1.5 ([7]) and (53):

/ a’fj a:vj ws aml We d-’I: dt =
Q. x(0,t)

/ afj Oz ;e O, we da dt
u25 X (0 t)

< 09/ |Vl |Vw€\dmdt+sclo/ | D2y |[Vw.| du dt
uZEX(O t) U25 (O t)

< CQHUO”LQ(O,t;Hl(LIQE))st”L2(0,t;H1(u25)) + 5010||U0||L2(0,t;H2(Q)st”L2(0,t;H1(QE)

1
< c11€? ||U0||L2(O,t;H2(Q)) ||w5||L2(0,t;H1(Qs))'

It is remain to bound last two terms in (56). Evidently that

T30y, v0 we dx dt‘ < ecuallwel| 20,451 (u))

and

3
/ Yewe dx dt‘ <e2enslwellp20,m (00))-
Q.

According to (8) and (10) we have

Ze

T}, Oz, v0 We dSy dt‘

dx dt

< 252/
Qo x(0,t)

“+cC14 5/
Q. %x(0,t)

afj a{j 1/10(5) ‘52% azz (Tk aa:;cUO we)

T, aack Vo We

20

drdt < cise|volln2 (0,02 Q) [1well 220,451 (0.)) -

(58)



Similarly we have

3

t
1
/ e we ds, dt’ < c16€2 ||voll L2 (0,612 () [|Well L2 (0,617 (2.)) -
0 JE.

Thus, taking into account estimates obtained above, we deduce from (55) that

1

1
5/9 w?(%t) dx + Cl||w€||2L2(O,t;H1(QE)) < cire? HwE”LQ(OJ;Hl(QE))

=

+|fe = foll 2o x 0,00 lwell L2 (0,451 (2. ))

2
+ea D 1198 = g6™ |l 2@ x @ e | L2 (02
m=1

We can now proceed analogously to the proof of (15) and obtain

t .
Ofél%XT lwe (2, t) |2 (0. + lwell 20,111 (20))

2
<cig (53 + |l fe=follzzomizzay + 3 llgt™ - g(()m)||L2(O,T;L2(Qs))> - (59)

m=1

Tt follows from (54) and (59) that

Ogl%XT lue — e 2.y + |lue — ﬂsHL?(o,T;Hl(QE))

2
=¢ <€§ +fe = follzomszzcany + D llgd™ = gém)lle(o,T;Lzms))) -

m=1
where the constant C' is independent of €. Thus, we have proved the following result.

Theorem 3. Let the assumption made at the beginning of this section and conditions for functions
h, k1, k2 (see (3)) are satisfied. Let f- € L2(0,T;L2(Q)) and g™ € L2(0,T; HX(Q)),m = 1,2.
Then between the solution u. to problem (6) and the approzimation function (48) the estimate
(60) holds.

6 Conclusion

An important problem for existing multiscale methods is their stability and accuracy. The proof
of the error estimate between the constructed approximation and the exact solution is a general
principle that has been applied to the analysis of a multiscale method efficiency (see [58]). We have
proved a such estimate in Theorem 3. It follows from results proved in the paper that for applied
problems in perforated domains we can use the corresponding homogenized problem, which are
more simple, instead of the initial problem with the sufficient plausibility.

Now it is easy to understand how to conduct investigation of boundary-value problems in per-
forated domains in the case of the p—multiphase boundary interactions. In this case we should use
solutions to special problems (as (9)) that correspond to each surface interaction and then deduce
the respective integral identities, with the help of them it will be possible to perform the asymptotic
analysis as before. Similarly we can make the asymptotic investigation of the initial /boundary-
value problems for the reaction-diffusion semi-linear systems with the p—multiphase nonlinear
boundary interactions in perforated domains.

It should be stressed here that we do not know asymptotic behavior for the solution to similar
problem in the case when together with nonuniform Neumann or Robin conditions there are also
the Dirichlet conditions on some boundaries of the halls. This question is still open.
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