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Modeling of ferroelectric hysteresis as variational inagy

Michael Kutter*, Anna-Margarete Sandig

Abstract

Ferroelectric materials are characterized by interaadiffects of mechanical and electrical fields due to
different polarisation directions of the unit cells. Th&at®ns between polarisation and electric field and
mechanical strain and electric field respectively can berite=d by hysteresis curves. Some models,
which describe the ferroelectric material behaviour, Bif.[10], rely on concepts close to elastoplastic-
ity. We use these ideas and derive variational evolutioguaéties analogously to elastoplastic models
discussed in [2]. Based on these inequalities we formulatiévalent mathematical problems and get
some existence results. The formulation of variationalgian inequalities is a good starting point for
numerical methods similar to elastoplasticity.

Keywords: Ferroelectric hysteresis, Variational inequality, Piife of maximum dissipation

AMS Subject Classification:

1 Introduction

Piezoelectric materials are widely used in electromeda@sensors and actuators, e.g. in accustic devices
as microphones, in ultrasonic transducers for medical ingagn fuel injectors of diesel engines or in
high-precision positioners. In particular, piezoceragvdce very important for actuator applications, since
they show short response times. Moreover, consideraltesaran be induced by small electric fields due
to the strong inverse piezoelectric effect. Barium titan@aTiO;) and lead zirconate titanate (PZT) are
the most prominent materials in this class; Bafi® mainly interesting for scientific research, PZT is
commonly used for technical applications.

Piezoceramics belong to the class of ferroelectric maseridysteresis phenomena occur due to the fact
that the polarisation in the unit cells can be influenced bgxernal electric field. For small fields this
effect does not occur and the theory for linear piezoeletfrieads to good simulation results. For larger
fields this is not true any more and because this cannot bectedlfor a permanently growing range of
applications, it becomes more and more important to stuelyetiphenomena.

The increasing economic relevance induced a lot of resesntdlities in the last years. There are different
approaches to model ferroelectric material behaviour. icrascopic models the switching behaviour of

the polarization directions for polycrystals is investagh see e.g. [3], [7]. The major drawback of these
models is the computational effort required for the simalabf macroscopic devices. Another approach
are thermodynamically consistent macroscopic modelstellagphenomenological description is favoured
where hysteresis curves characterize the relations betp@arisation and electric field and mechanical
strain and electric field respectively. In [4] and [10], two#ar models of this type are presented, which
are based on concepts developed in the late 1980s. One cgathese models with the theory for

elasto-plastic hysteresis phenomena since the basicadeagry similar. Besides coupled field equations
for the mechanical and electric fields evolution equatiardriternal variables occur. This mathematical
structure resembles models in viscoplasticity, see [1].
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In this paper we follow ideas of elasto-plasticity, see fjd formulate a class of ferroelectric models as
variational inequality. The model of [10] is included. Weeuhke principle of maximum dissipation for the
mechanical and electric thermodynamic forces. Adding #selting inequality to the weakly formulated
field equations we derive variational inequalities for nadhbal displacement and electric potential fields
as well as for the remanent strain and polarisation field® rélsulting variational inequalities model the
ferroelectric hysteresis as an evolution process and dtabteifor numerical computations. We discuss
the existence of solutions in appropriate function spaoesirfear and nonlinear models which are given
by different choices of the enthalpy function. In generfa¢ problem is equivalent to a doubly nonlinear
one. Problems of this type are investigated in [8], [11] aswkeially for the ferroelectric model in [5].

The paper is organised as follows: Section 2 explains shird physical background for piezo- and
ferroelectricity and remind the reader of the linear modeldiezoelectricity. Especially, we focus on the
material structure of piezoceramics and discuss the hegtecurves for the polarisation and the strain.
Then, we present the model which was suggested in [10] acdstisn particular the special choice of the
electric enthalpy functional. In section 3, our variatibftmmulation is mathematically derived in detail.
The problem is stated as variational inequality in appatpriunction spaces. Section 4 treats the existence
of solutions for our problem. We first consider the generaécavhich leads to a doubly nonlinear problem,
before we turn to a simplified case where the electric enyhialp quadratic form.

2 A model for ferroelectric hysteresis

In this section, we derive a model for ferroelectric hystey@henomena, which is based on ideas that are
used in elasto-plasticity. For the elasto-plastic thewgyrefer to [2], the ferroelectric model was presented
in [10], a similar one in [4]. But before we start to discuse ttetails, we will first have a look on the
physical background, especially on the microstructurenblelectric materials. We refer to [4] where this
is discussed more detailed.

2.1 Physical background and coupled field equations

Ferroelectricity is, as well as piezoelectricity, an elentechanical coupling effect. The reason for the
interaction between mechanical and electric fields liekérhicrostructure of the material. Ferroelectric
materials have a crystalline microstructure, where urlis @e positioned in a periodic lattice. Each unit
cell consists of positively and negatively charged ionghéligh the total electric charge of each unit cell
is zero, the centers of positive and negative charges nddd he at the same place. The position of these
centers with respect to each other is very important for taet@mechanical properties of the material. If
they can be shifted against each other by an external loady#terial is callegolarisable A displacement

of the centers of charges builds an electric dipole and ifisudipole exists without any external load, the
unit cell posessesspontaneous polarisatiosee figure 1(b). This is the case for ferroelectric mateaal
for example barium titanate below the Curie temperaturefigere 1(a).

The asymmetry caused by the shift of the charges can be beddry apolar axis e.g. the z-axis in figure
1(a). A rotation by 18®with a rotation axis perpendicular to the polar axis leadsrtother configuration
as the initial situation. If there exists such a polar axia polarisable material, an external mechanical load
in the direction of the polar axis displaces the ions agaash other and induces an electric field. This
is the (direct) piezoelectric effect which was discovergdPierre and Jacques Curie in 1880. The inverse
effect also exists: an external electric field parallel ® plolar axis causes a deformation of the unit cells:
compression in one and dilatation in the opposite direct®mth, the direct and the inverse piezoelectric
effect have many technical applications, especially as@srand actuators.
The piezoelectric effect can be described by a well knowedinmodel which was suggested by Woldemar
Voigtin 1910, see [12]: As mechanical quantities, we coasile dispacement field the linearised strain
tensor

£ =

(Vu+ (Vu)'),

N =
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(a) The unit cell of barium titanate below the Curie (b) Spontaneous polarisation of a unit cell
temperature

Figure 1: The structure of ferroelectric materials

and the Cauchy stress tensorThe electric quantities are the electric potentiathe quasi-static electric
field E given by

E= _VQD7
and the dielectric displacemebt The piezoelectric effect is described by the force balance

—dive = f, (2.1)
wheref is a given external load, and by

divD =0, (2.2)

which is one of Maxwell’'s equations. In general, the densftihe free electric charges occurs on the right
hand sight of equation (2.2), but here, we assume that therialds an ideal dielectric and thus, all electric
charges are bound in the lattice. The model is completedhleaticonstitutive relations:

oc=ce—e'E, (2.3)
D =ec+¢€E. (2.4)
c is the elastic tensog,the dielectric tensor anelthe piezoelectric coupling tensor.
For many applications, this linear model turned out to berg geod description of the piezoelectric effect.

But for piezoceramics as barium titanate and lead zircditateate ferroelectric hysteresis phenomena play
an important role for technical applications and thesectffare not covered by the linear model.

Figure 2: Domain structure in ferroelectric materials ([4], S.225)

In order to understand what happens with these materialsawe to look again at the microstructure, but
on a larger scale as before. Ferroelectrics are polychystahaterials, that means that several unit cells



together build alomain see figure 2. Inside one domain, the dipoles of the singleaetls point in the
same direction. For completeness, it should be mentiorsegéveral domains build a so-callgiin, but
this is not important at the moment. It is characteristicfésroelectrics that the direction of the dipoles of
the domains can be shifted by an external load. This prosgesily irreversible and that is why hysteresis
phenomena occur.

For technical applications which use the piezoelectripprties of a material, it is crucial that there exisists
a macroscopic polar axis. In general, this it not the casgiferoceramics, since the orientations of the
domains are randomly distributed, but a polar axis can batedeby shifting the domains by an external
field. As we can see, the dipoles of the unit cells play a venydrtant role here and thus, we have to
integrate that fact into the model. First, we define the @gippbment: Consider two electric chargeg

and—q and the displacement vectﬁr, pointing from—q to +¢. Then, the dipole momentis defined by
—
p=qd.
The model in [4] and [10] is a macroscopic model and thus, theld moment is not a usefull quantity

here, since we have one in every unit cell. Therefore, wenagshe existence of a density function for the
dipoles, thepolarisation P, such that for every C R? the total dipole moment iw is given by

p:LP(z) dz.

As mentioned before, the orientation of the dipoles in thedios can be shifted by a sufficiently large
external load, e.g. by an electric field. The polarisatidiofes a hysteresis curve, see figure 3. Here, the
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Figure 3: Hysteresis curve of the polarisation ([4], S.236)

electric field points incs-direction. Figure 3 shows the componehisand P; and means:

e Initial configuration (D): The orientations of the dipoles in the domains are rangatistributed
such that there is no macroscopic dipole moment.

e If |E| exceeds a critical value, the domains begin to switch uriftolarisation in all domains points
almost in the same direction as the external field and a g&tans reached®). This process is
partly irreversible.

e After turning off the external electric field, themanent polarisatiomemains ). This state is
important for technical applications, since there is a msoopic dipole moment in absence of an
external field. For small loads, the behaviour of the maltega be described by the linear model for
the piezoelectric effect.

e Application of a sulfficiently large electric field in the opgte direction causes the polarisation to
vanish at @) until it reaches a saturation again &)

e When turnig off the electric field, we can see that the rembpelarisation remains again, but in the
other direction ©).
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Figure 4: Butterfly hysteresis curve of the strain ([4], S.237)

Associated with the switching of the polarisation is a mete deformation. That is why the strain also
follows a hysteresis loop during this process. Figure 4 shitve components;s of the strain tensor and
E5 of the electric field and can be interpreted as follows:

e The reference configuratiodl)): The displacement field and the strain vanish.

e As before, the domains begin to switch whéh reaches a critical value. The material expands until
a saturation is reached, i.e. the polarisation in all dospaints almost in the same direction as the
external field @). Again this process is partly irreversible.

e Aremanent strain remains, if the electric field is turned(@).

o After applying a sufficently large electric field in the opfieslirection, the strain vanishes firghj
until it reaches a saturation agai®yj. In contrast to the polarisation the saturation of theisti®
independent of the direction of the external field.

e The remanent strain remains again after turnigofi®).

2.2 The model

The basic idea for the model is that both the straignd the polarisatiod® can be split additively into
elastic partg©, P¢ and remanent parts, P":

e=¢e"+¢€",
P =P+ P
This leads to an additive splitting @?:

D =¢E+P=ekE+ P +P".
——

=:De

The remanent variables and P" can be interpreted as inner variables. In order to derivéuteo
equations foe” and P", we consider the electric enthalgy as a thermodynamic potential. As unkown
variables we consider the mechanical displacemertd the electric potential, as it is often done in the
linear piezoelectric model, and and P". Thus,H is assumed to be dependent of these unkowns, i.e.

H=H(ee" E,P").

Due to the irreversibility of the processes, some energylgst dissipatior). We consider the second law
of thermodynamics which leads here to the so-catlisdipation inequality

D=c¢:6—D-E—H>0. (2.5)
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A formal calculation of the time derivativd in (2.5) yields

OH OH . OH OH .
= ——):E€— —) - FE - 1 €7 — -P" > 0. .
D=(0-5)ié=Dhoz) B omidl == P20 (2.6)

Note that ' denotes the usual scalar product of vector®ih and '’ stands for the scalar product of

matrices inR™>": . .
a~b:Zaibi, A:B= Z aijbij.
i=1

ij=1

Inequality (2.6) has to be satisfied for all possible proesssspecially for reversible ones whefe= 0
and P" = 0. But for these processes, the inversion is also allowed lansl the following constitutive
relations hold true:

OH
= — 2.7
o= @7)
0H
D=-—r. (2.8)

As a condition for the electric enthalpy we assume that tastiel partg© and D¢ satisfy the linear consti-
tutive equations (2.3) and (2.4), i.e.

c=cle—¢c")—e'E, (2.9)
D— P =e(e—¢€")+€E. (2.10)

Due to (2.6), (2.7) and (2.8) we get the reduced dissipatieguality

D=6:6"+E-P" >0, (2.11)
where
oH
= ——— 2.12
o 9 (2.12)
~ oH
FE = — 2.1
9P (2.13)

denote thehermodynamic forcesWe uses and E to formulate a criterion to decide wether a process is
irreversible or not. Again we orient ourselves by the elgssstic theory and define a yield function and a
yield surface:

Definition 1 (Yield function und yield surface)Let S C S3*3 x R3 be a convex and closed set and
0 € int(S). We call the boundarysS yield surface Furthermore, we assume th&tcan be described
by a functionp : $3%3 x R3 — R, theyield function such that

o int(S) = {(5,E) € $33 x R?: ¢(5, E) < 0},
¢ 0S={(6,F) € S¥3 xR®: ¢(5,E) = 0} .

The physical interpretation is the following:
e $(7, F) < 0: The material behaviour is reversible.
e ¢(,E) = 0: The process is (partly) irreversible.
e $(5, F) > 0: These states are not allowed.

It should be mentioned that the previous definition of thddymurface is given for fixed: € Q and
t € [0, 7). In particular, yield surface and yield function can varysiandt.

11



We return to the reduced dissipation inequality (2.11). &kgression on the left hand sight can interpreted
as the rate of energy that gets lost during the process. kr éocddescribe this in detail, we apply a well
known principle, theprinciple of maximum dissipatigmvhich reads as follows:

For fixeds” and P", the thermodynamic forces are given in such a way that theeesjon

G+ E-P"
of the right hand sight of (2.11) gets maximal, i.e.

DE", P")=6(",P"): "+ E(€",P") - P" = max {C:é" +&-P"}. (2.14)
(¢,€)es

Since the set is defined pointwise fox: € (2, this principle has also to be understood pointwises' i
bounded and thus compact, there exists a $@&t&) which realise the maximum of the dissipation. We
will later suppose, that the sef§x) are even uniformly bounded . In this case, there exist functions

5(z), E(x) € L*(Q) such that the maximum above is realised for every Q).
With the help of the principle of maximum dissipation it isgsible to derive evolution equations:

Theorem 1. Assume the principle of maximum dissipation (2.14) to hBld¢thermore, suppose that the
setS C $2%3 x R3 has a smooth boundary. Then the associated flow rules hadd tru

_3% An, (2.15)
oo

_390 _ Am, (2.16)
OF

wherel = \(g, E) is a nonnegative factor angh, m) an outer normal vector oS.

Proof. (see e.g. [10])
We define the Lagrangian functional 6n

L(5,E,\) =-D(G,E)+ \p(6,E) = -5 : " — E - P" + \$(5, E),

whergX € R is a nonnegative Lagrange multiplier. The method of Lageamgltipliers with the constraint
¢(d, E) < 0 leads to the conditions

oL ~0¢
% T4+ )\8_~ =0,
OL _ _prii%
1o} OF
and
Ap(6,E) =0

Sinceds is described by the equatiaf(s, ) = 0 with a smooth function and since the gradient is
perpendicular to level sets and points in the direction efsfeepest slope, equations (2.15) and (2.16) hold
true with a rescaled factor(c, F). O

The conditions
e \>0,
e $(6,E) <0,
e \(5,E)=0,

from above are calleHarush-Kuhn-Tucker conditions

12



We summarise the model: We have the balance equations

—dive = f, (2.17)
div D =0, (2.18)
the evolution equations
£ = Xa—?, (2.19)
06
P = Xa—?, (2.20)
OF
the constitutive relations
o= 88_1(: =cle—¢")—eTE, (2.21)
OH , .
foa—Efe(sfs)JreEqLP, (2.22)
and the relations
OH
= 9 2.23
6= -5 (2.:23)
~ OH
E=—— 2.24
Spr (2.:24)
e=¢e°+¢€", (2.25)
P=P+ P (2.26)

2.3 A special choice for the electric enthalpyd and the yield function ¢

As explained above, the electric enthalpy should satiséycbnstitutive equations (2.7), (2.8), (2.9) and
(2.10). In the simpliest casH is a quadratic form. In [10], Schroder/Romanowski chodsefollowing
form:

H =H(e,e", E,P")

1

. L1 : . : . (2.27)
=—cle—e"):(e—¢€")— 56E~E—E~e(P’)(s—57) —E-P"+ f(P").

2
Schroder/Romanowski suggest for the hardening téthat

T

o) = () v (252 4 oy <1 . (Ppa)) |

Here,P; € R is a saturation fofP"| anda € R? is the direction of the polar axis witla| = 1. Note that
f depends only o™ and not ore”. The derivative
of(P")
oPT

Pr.
= Artanh ( 2 a) a

models the dependence between the effective electric fieldree polarisation due to

OH 0 - - of(PT)
o = g5 (B e(P)e =N + B - S0

E=
which is equivalent to

G LR Rely 3

in agreement with figure 3.
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Remark 1. It should be mentioned here that the piezoelectric tersmn depend o,
The yield function in [10] has the form (compare a von-Misggdd/function in elasto-plasticity)
¢(6,E)=E-E— E?,

i.e. ¢ does not depend oh. E. is the coercive field strength, which is the critical value [fB] at which
the polarisation in the domains begin to switch.

But there are some problems with these choicesifaaind ¢: There is no hardening term i which
models the butterfly hysteresis curve for the strain, seediguFurthermore, the evolution equation (2.15)
now reads

<0

£ = A= =0,

ol
due to the fact that is independent of. That implies, that the strain does not show any irreveesibl
behaviour and that is not true. Following the ideas of [6] Hfi], one can solve this problem by replacing
the evolution equation (2.15) by a constitutive law of therfo

. &g . .
e = P_aQ dev(P" ® P"),

whereg], is the saturation fog” in the polarisation directioa. Again, this modeling is not unquestioned
and we refer to [6] for a more detailed discussion. Howe@mnessimulation results can be found in [10].

In the next section we will present a variational formulatfor the model. We will not use the evolution
equations (2.15) and (2.16), but the principle of maximussigiation which led to these equations. Fur-
thermore, we will allow a more general form for the electnttealpy H which also contains hardening
terms depending osf'.

3 Variational formulation

In this section we present a variational formulation to oodel for ferroelectric hysteresis relying on ideas
which model elasto-plastic behaviour of materials as viaral inequalities, compare [2].

3.1 Function spaces

LetQ x [0,T] C R? x RT be a domain wherg has a Lipschitz-boundag2. On this domain we consider
the momentum balance equations

—divo(z,t) = f(x,t), (3.2)
div D(z,t) =0, (3.2)

where the vector functioffi is a given volume force density. The boundafy is splitted into Dirichlet and
Neumann parts, corresponding to mechanicat 1) or electric loadgi = 2) :

89 = ’qu V) ’YD”

wherevyy, N yp, = 0 and|yp,| > 0 for ¢ = 1,2. As unknown variables we have the mechanical
displacement field: and the electric potential, which satisfy the boundary conditions
u(,t) =0 onvyp,,
on=g 0NN,
(,0('; t) =0 onvp,,
D-n=gy onyn,,

14



whereg; andg. are given. With respect to the space variablge suppose for a fixet

u(t) € Vi = {[H ()] : ulyp, =0},
p(-,t) € Vo i= {H'(Q) : ¢lyp, = 0}.

As before, the strain tensor and the electric field are defiyed
1
£(u) = 5(Vu+ (Va)"),
and we assume an additive splittingeoiind P

e=¢e’+¢",
P=P¢+ P,

where the remanent quantities and P” as well as their time derivative$ and P" belong for fixedt to
the following spaces:

P"(1), P"(-,t) € Qq := [L*(Q)]°.

In addition, we have the constitutive equations

OH .
=—=cle—¢")—e E 3.3
0= 5 cle—e")—e" E, (3.3)
a ' '
D——a—E—e(E—E)+€E+P. (34)

For the components of the material tensars ande we suppose that
Cijki, €ij, €ijk € (),
and that the tensoksande are positive definite, i.e. there exist constafts> 0, ¢g > 0 such that

ce e > colel?, Ve € §3%3

¢E-E>elE|? VE€R?
Note thats € Q1, D € Q5. Furthermore, we consider symmetric material tenspesande , that means
Cijkl = Cklijs Cijkl = Cjikl, €ijk — €jik, €ij — €ji-

We define the spac@ by
Z=Vi xVaxQ1X Q2.

Z is a Hilbert space with the scalar product

(wv Z)Z = (ua v)‘/l + (50719)V2 + (Ea q)Q1 + (Pv T)QQa
forw = (u,p,e, P), z = (v,9,¢,T) and with the usual scalar products of the particular spaneb®
right hand sight of the equation. Together with the spice [L2(2)]3 x L2(Q) x [L?(Q)]3*3 x [L?(Q)]?,
(Z,H,Z')is a Gelfand's triple. HereZ’ denotes the dual space. Taking the time into account, wergssu

w to be an element off 1 ([0, 7], Z). As initial condition we suppose that

w(0) = 0.

15



3.2 Derivation of the variational inequality

We derive a variational inequality in appropriate functgmaces, adding an inequality based on the princi-
ple of maximum dissipation to a weakly formulated boundatyie problem.

We remind of theprinciple of maximum dissipation (2.14): '
For fixed states”, P" the thermodynamical forcegc”, P"), E(¢", P") are given by

DE", P")=6(",P"): "+ E(€",P") - P" = max {C:é" +&-P"}.
£,€)es

For an arbitrary staté;, T') € Q1 x Q2 holds analogously

D(q,T) =6(q,T): g+ E(q,T)-T = max {S:q+&-T}.
(@e)es

It follows from the maximum-property that
D(¢,T) =5(¢,T) : g+ E(g, T

)
= max {C:q+E&-T}
($,€)es

T
>G(E" P):q+ E(E", PT)-T.
Adding and subtractin®(¢”, P") we get finally
D(¢.T) 2D P)+6: (=) +E-(T—-P"),  Y(¢.T)€Qrx Qe

and after integration ove®

/ D(q,T) dx > / D(", P dx + / G:(q—€)+E- (T —P") dx. (3.5)

Q Q Q
Now, we consider aveak formulation of the momentum balance equation
—dive = f.
Taking the scalar product of this equation with— «), wherev € V;, and integrating ovef2 we get
/(c(s —e") —el'E): (e(v) —e(n)) do
Q

(3.6)
—[f-wdes [ ge@-ide
Q YN

Analogously we multiply the electric balance equation
divD =0

with (8 — ¢), 8 € V, and integrate ove®

[ +eB e P (B) - B@) do= [ n(6-9)de (3.7)
€ YN,
Adding (3.5), (3.6) and (3.7) we get the inequality
/(c(e —c")—eTE): (e(v) — e(u)) dx
Q

+/w@faqu+Pw«mme@»m
Q

+/aH:(q7ér>+a—I{~(TfPT)dx (3.8)



We define forw = (u, ¢, ", P") andz = (v, 3,¢,T), and for fixedt,
(Aw, z) = / (c(e(u) — ") — eTE(p)) : e(v) dx
Q

+ / (e(e(u) — ") +eE(p) + P") - E(B) dx
Q
oH  OH

Lo q+ 9P -T dx, (3.9)
j(z)= | D(¢,T) du, (3.10)
Q
(@), zy= | f(t)-vdx+ / g1(t) - v da+ / g2(t)f da. (3.11)
Q YNy YNg

Let us make some remarks to the properties of the operdtgrand!.

e The operatod : Z — Z' consists of a linear part and a nonlinear one. The nonlitygarmgenerated
by the enthalpy.

e Thefunctionaj : Q1 xQ2 C Z — IRU{+oco} is positively homogeneous, that megs:) = ¢j(z)
for all ¢ > 0. Furthermorej is convex, that means, fore (0,1) and all(z1, z2) € Q1 x Q2 holds

This follows immediately from the principle of maximal digation, since foe; = (¢;,T3),7 = 1,2,
holds

DAz1 + (1 —N)z2) = (fx}é&;;{s{f: Mg+ (1= Ng2) +E- (N1 + (1 = M\)T2)}
< AD(q1,T1) + (1 = A\)D(g2, T2).

Moreover, the functional is lower semicontinuous, that meansz,if — z, then
liminf,_j(z,) > j(2). Indeed, forz, = (¢n, T:,) we have

D(zn) = max {S:qn + £ Tn}
(S,€)es
= Hl,n “dn + H2,n . Tn
>11 1 qp + 1o - T,

where(I1;, I1,) are the states which realize the maximunfifx). Going to the limit, we get after
integration the lower semicontinuity gf

¢ If we assume that the sef§x) of all allowed states are uniformly bounded, i.e.
S(IL') C BR(Ossxs ><]R3)

with R > 0 independent of, thenj is Lipschitz continuous. We can proof this as follows:
Let zy = (v1,01,q1,T1),22 = (v2,P2,q2,T2) € Z. As mentioned before, there exist functions
(51, El), (SQ, EQ), such that

D(s1(z), Er(z))
D(s2(z), Ea(x))

s1(z) : qi(z) + Ex(z) - Th(z),
s2() : g2(z) + Eo(z) - To(z),
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)
D(s1(x), By (z)) > D(s2(x), E2(x)). It follows

Is1(z) : qi(z) + Er(z) - Ti(2) — 52(2) : g2() — Ea(x) - To(w)|
<si(x ) 1(@) + Ei(z) - Ti(2) — s1(2) : g2(z) — Er(2) - Ta(x)
< |(s1(2), E1(2)[|(q1 (%), T1(2)) — (g2(2), To(2))]
<R|(ql( Ti(z)) — (g2(2), Ta(2))]-

Here,| - | denotes the Euclidian norm ¢¥*3 x R3. Since( is bounded, we have

(sis Ei)ll21 () < Cll(si5 Ei)llL2(0)-

It follows that
7(21) = j(22)] < ; ID((s1, E1)(2)) — D((s2, E2)(2))| dx

SR [ |(s1(2), Er(2)) = (s2(x), Ba(2))] da

Q
< RC - ||(s1, E1) — (52, E2)| 2 ()
=RC - [[z1 — 22|z

and thus the Lipschitz-continuity.

¢ If we assume that for fixed timethe mechanical volume force dens]tye V{ and that the mechani-
cal and electric Neumann boundary datac [H~z (v, )] andg, € H 2 (yy,), then the mapping
l: V41 x Vo C Z — IRis linear and continuous and represents the exterior Iddoi®, that we have
to understand the integrals as dual pairing; usual integredur, if f, g1, go are Lo-functions on{2
oron-y,,i = 1,2, respectively.

Now, we formulate th&ariational inequality problem :

Find w = (u,,e", P") € H'([0,T], Z) with w(0) = 0, such that for all: € Z and almost alk € [0, T
holds:

(Aw(t),z —w(t)) +j(z) — j(w(t) = (1), z — w(t)). (3.12)

3.3 Remarks to the choice of the enthalpy function

To ensure that the variational inequality is well-definedagsume

gﬁ € [L2(Q))?, (3.13)
gg € [L?(Q)]*3. (3.14)

If we consider an electric enthalpy of the form
1 1
H=H(e" E,P") = 3 cle—e"): (E—ET)—§6E-E—E'Pr—E'e(PT)(E—ET)—I—f(PT)—l—g(ET), (3.15)

these conditions are equivalent to

9f

o or € L2, (3.16)
Jg y
5o € (L2, (3.17)



In this case the reversible parts= %—f andD = —g—g + P satisfy the linear constitutive equations

(2.9) and ( 2.10). The electric enthalpy considered by &béRomanowski in [10] satisfies the condition
(3.13),if
P"-a< P, —4,a.e. inQ forafixeds > 0.

The hysteresis curve of the polarisation, see figure 3, tagigsoximately in this case. In order to guarantee
that the butterfly hysteresis curve of the strain, see figuteols, too, we have to specify the quantities
e(P"), g(¢") and the yield functiorp. As mentioned before, another possibility is to considetita@hal
constitutive equations, e.g. as in [6].

4 Solvability of the variational inequality

In general, the variational inequality (3.12) is nonlingary and«w and belongs to the class of doubly
nonlinear problems. We will give some equivalent formwas, which facilitate the reading of the corre-
sponding literature. For this we bring the definition of aditflerential to mind:

Definition 2. Let V' be a real Banach space anl : V — [—oo,00] a functional onV. An element
u* € V' is called subgradient of atu € V, if F(u) # +oo and

Fv) > F(u)+ (u",v—u) YveV.
The set of all subgradients atis called subdifferential and is denoted 8y (u). If no subgradient exists

atu, then we pudF'(u) = 0.

4.1 Equivalent formulations

Lemmal. LetbeA: Z — 7', j : Z — IR andl — IR the operators defined by (3.9), (3.10) and (3.11).
The following problems are equivalent

1. Find an elemenw € H'([0, 77, Z) with w(0) = 0, such that for almost at € (0, 7") holds:
(Aw(t), z —w(t) +j(2) = j(w(®) = ((t),z —w(t)), VzeZ

2. Find an elementy € H'([0,T], Z) with w(0) = 0 and an element* € H([0,T], Z’), such that
for almost allt € (0,7") holds:

(Aw(t), z) + (w*(t), z) = (I(t), 2), Vz e Z,

or shorter
1(t) € Aw(t) + 95 (w(t)).

3. Find an elementy € H!([0,T], Z) with w(0) = 0 and an element* € H([0,T], Z’), such that
for almost allt € (0,7") holds:

(Aw(t), 2) + (w*(t),z) = (I(t),2),  VzeZ,
(w*(t), 2) < j(2), Vz € Z,
(w*(t),w(t)) = j(w(t))

Proof. Firststep 1. = 2.
We consider a solutiow € H' ([0, 7], Z) of problem1., that means

(Aw(t), z —w(t)) + j(z) — j(w(t)) = (I(t),z —w(t)), VzeZ. (4.1

We definew* (t) € H'([0,77, Z') through



From inequality (4.1) follows
(w*(t),z —w(t)) < j(z) — j(w(t), VzeZ,

and therefore we have
w*(t) € 95 (w(t)).
The elements undw* satisfy problem 2.
Second step. = 3.
Assume thatv € H([0,7], Z) andw* € H'([0,T], Z') solve problem 2. Since*(t) € 9j(w(t)) it
holds
§(2) > j(w(t)) + (w*(t), z —w(t)), VzeZ (4.2)

We show by contradiction that

First, we assume
(w*(t),w(t)) > j(w(t)).
Then, it follows for almost all fixed € [0, 7] and forz = 2w(t) from (4.2) due to the positive homogenity
of j
0> j(w(t)) — (w*(t), w(t)) =0,
what cannot be.
Now, we assume

(w* (), w(t)) < j(w(t)).
Then we get for = 0 from (4.2) that

02 j(w(t)) — (w*(t),w(t)) > 0,
a contradiction, too. Here we have used tf{@) = 0. Therefore, we have

(W (1), w(t)) = j(w(t)),

and consequently due to (4.2)
(w*(t),z) < j(z), VzeZ

Second ste8. = 1.
Insertingz — w into the first equation of problem 3 insteadzoéind using both other conditions of problem
3 we get immediately that is a solution of problem 1. (]

4.2 Remarks to the solvability of the doubly nonlinear probem

As we have seen the variational inequality (3.12) can bevatpntly rewritten as follows:
For i € H'([0,T]),Z’) find an elementv € H([0,T], Z) with w(0) = 0, such that for almost all
te 0,17
I(t) € Aw(t) + dj(w(t)), (4.3)

wheredj is the subdifferential of the functiongl Since (4.3) is nonlinear i andw, this is called
a doubly nonlinear problemIn [8] one can find an existence theorem for a solution of ttial value
problem

ft) € Aw(t) + 9T (w(t)), w(0) = wo. (4.4)
There the Rothe method is used, which we will explain shortly
Let us consider an equidistant partition[of 7], namely0 = tg < t1 <te < --- <ty =T,
ty —tn-1=k,k=T/N,n=1,...N. We setf,, = % f:;l f(t)dt. This discretisation in time leads to
a semi-discrete recursive formulated problem for the unkrsav,, :

Wn — Wp—1

fn € Aw, + 09( A

), w(0) = wp. (4.5)
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Rothe solutionsu* are defined by piecewise affine interpolation

wWr(t) = wp_1 + 0wy, - (t —t,_1) for t, 1 <t<t,, (4.6)
with A
Wn, Wp — Wn—-1
Swy, = = . 4.7
w . 2 (4.7)

The following theorem is proved in [8], pp. 322-326,

Theorem 2. LetV C H C V' be a Gelfand’s tripel. Assume that the operator V' — V'’ can be splitted
asA = Ay + As, where4, : V — Vs linear and selfadjoint{A,v,v) > |v|?,, andA; : H — H is
Lipschitz continuous. Suppose thlat H — IR U {400} is uniformly convex o/ in the sense

(&1 — &, v1 —v2) > cllvy —v2?, V& € 0¥(v1), Ve € U (v2), (4.8)

and that¥ is lower semicontinuous olr, proper and0 € 9V¥(0). Furthermore, suppose thaf is
compactly imbedded iff. Moreover, letf € H'([0,T], H) andwy € V be a steady state tg(0) in
the sense thatl(wy) = f(0).

e Then the Rothe functions® exist and belong t@’([0, 7], V) and we have the estimates
”wk”Wl!C’O([O,T],V) <C.

e There is a subsequence such thdt — w weakly* in W1->°([0,7],V) and every suchv is a
solution fromH* ([0, T}, V) to the problem (4.4).

Now, we discuss, whether the assumptions of theorem 2 asfiadtfor the operators occuring in our
problem (4.3).

The function spaces:

At the end of subsection 3.1 we have introduced the space

Z =V x Vo x Q1% Qa,

where
Vi = {[H Q)] 2 uly,, =0},
Vo = {Hl(Q) : 50|’YD2 - O}a
Ql = [LQ(Q)]BXB7
Q2 = [L*(Q).

Furthermore, it was
H = [LAQ)P x LA(Q) x [LA(Q)) x [LX(Q).

Note that(Z, H, Z') is a Gelfand-triple. Now, we identifyZ with V' and see that the conditiof, is
compactly imbedded i, is not satisfied. This can be repaired, if some additionglileity of the
solutions can be guaranteed, see Lemma 4.

The operators:

The operatod was defined by (3.9) as a mapping frdfn— Z’: Ais decomposed into a linear part and a
nonlinear one, where the nonlinearity is generated by thetret enthalpyH. The linear part contains the
selfadjoint operator

(Aqw, z) = /Q(cs(u) ce(v) dx —|—/ eE(p) - E(B) dx,

Q
which is V-elliptic in Z, if the measures of the mechanical and electric boundartg par and~p, are
positive. The remainding pa#t; = A— A; : H — H hasto be Lipschitz continuous what can be realized
by a suitable choice of the electric enthalfly
The functionalV is identified with the dissipation functional As we have already discussed in subsection

21



3.2 the functionaj is lower semicontinuous oW, proper and) € 9¥(0). Furthermore we have seen the
convexity ofj, but we could not show the uniform convexity (4.8).

In [5] existence and uniqueness results for a class of nealihyteresis models for ferroelectric materials
are derived using the theory of viscoplasticity developedli. But, in general it is an open problem,
for which class of electric enthalpies we will get the existe of a solutionv € H*([0,77], Z) for our
variational inequality. We concentrate on the linear casghat follows.

4.3 Solvabilty of the linear problem
We consider a simple form of the hardening tefta”, P") in the electric enthalpy in (2.27), setting

H =H(e,e", E,P")
:%c(s —eN:i(e—¢€")— %GE -E—FE-e(P")(e—¢c")—E-P" (4.9)
+ 5Hie" 1" + SHoP™ - P7,
where H; and H» are positive definite tensors. Then the corresponding tgeragenerates a bilinear
formonZ x Z:

(.2) = aw,2) = [ e(elu) =) (0) = @) + B () - B(B) da

Q

+/s;eTE(ﬂ) t(e(u) —€") —e"E(p) : (e(v) — q) dz
+/E(ﬁ)-PT—E(w)-deJr/Hls":q+H2P"-Tdm.
Q Q

Note that the bilinear form(-, -) is not symmetric, that meangw, z) # a(z, w).
Analogously to (3.12) the simplified variational inequalieéads:

Forl e HY([0,T],2") findw = (u, p,e", P") € H'([0,T], Z) with w(0) = 0 such that for all € Z and
almost allt € [0, T the following inequality is satisfied:

a(w(t),z —w(t)) +j(z) — j(w(t)) = ((t),z — w(t)). (4.10)

A similar variational problem for elasto-plasticity is dysed in [2], chapter 7, with the help of the Rothe
method. In [2] the elasto-plastic bilinear form is symmetri contrast to our problem where a nonsym-
metric bilinear form occurs. This makes the proof more cacapéd, but we can follow the steps of the
proof of Theorem 7.3 in [2] in principle.

As before we start with an equidistant partitio@f7'],0 = tp < t1 <to < -+ <ty =T, tpn—tn_1 =k,
k = T/N andl,, = I(t,), which is well defined due to the embeddif ([0,7], 2") — C([0,T], Z").
We consider the semi-discrete problem:

Find {wy, }n=o,...n C Z with wy = 0 such that
a(wp, z — Dwy) + j(2) — j(Dwy) > (ln, 2 — Awy,), Vz € Z. (4.11)
Here,Aw,, := w,, —w,_1andn=1,..., N.

The existence of the s¢w, },—o,...v C Z and appropriate estimates can be proved analogously to [2],
Lemma 7.1, p.160, by the following Lemma:

Lemma 2. For every se{l,, }=o,...n C Z' withly = 0 there exists a uniquely determined set of solutions
of (4.11){wy, }n=0,...n C Z withwy = 0 such that

1. j(Awy) < oc.
2. There exists a constanindependent of with

[Awnlz < el|Alyl| 2 (4.12)
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Furthermore it holds, compare [2], Lemma 7.2, p.161:

Lemma 3. Assume that € H!([0,T], Z’) with [(0) = 0. Then the solutio{w,, },—o,... n defined in
Lemma 2 satisfies

 Jaxy lwallz < ellillLro.1,275 (4.13)
N .

> Eldwnll% < llilFz 017,21 (4.14)
n=1

with dw,, :== Aw, /k forn=1,... N.
Now, we can construct a Rothe sequence, definini§ dfi] the piecewise linear function
wh(t) = wp_1 + 0wy, - (t —ty_1), for t,  <t<t,,1<n<N. (4.15)
It follows directly from (4.13) and (4.14)
[w* || L2(0,71.2) < collw® || Los(o.11.2) < ¢, (4.16)
[* || L2((0,77,2) < €, (4.17)

with a constant , independent ot. Due to the fact that bounded sets in reflexive Banach spaegs (
H([0,T], 7)) are weakly sequentially compact we get immediately thiefdhg corollary:

Corollary 1. Assume thate H'([0,T], Z") with 1(0) = 0. Then every sequence of time steps
(km)men C Rwith k,, — 0 for m — oo has a subsequence , also denotedMy)en, such that

whm —w in HY([0,T), Z). (4.18)

All considerations are valid for both symmetric and nonsyetnn bilinear forms until now. In order to
show that the limit functionv from (4.18) is indeed a solution of the variational ineqtyal#t.10) we need
the symmetry of the bilinear form as in [2] or an additionahdition if the bilinear form is not symmetric.
Moreover, the dissipation functional should satisfy somieditions.

Theorem 3. Let! € H([0,7T],Z’) with [(0) = 0. Suppose the sets of admissible stresses S(x)
for pointsz € 2 are uniformly bounded. Then, the dissipation functionaldri0); : Z — R U {+oo}
is non-negative, positively homogeneous, convex, prapetipschitz-continuous. The bilinear forris
Z-elliptic, if |yp,| > 0,7 = 1, 2. Furthermore, if we assume that

m—00

T T
lim inf / a(wb (), b () dt > / a(w(t), (L)) dt (4.19)
0 0
holds true, then the weak limit is a solution of problem (4.10

Proof. The properties of the dissipation functional are provediinsgction 3.2.
Now, we adapt the proof of Theorem 7.3, p.166 in [2] to our case

First step Introduction of step functions i.

We start with the discrete variational inequality (4.11).
a(wn7 zZ— Awn) +](2) - J(Awn) Z <lna zZ— Awn>7 VzeZ (420)

We divide (4.20) byt and due to the positive homogeneityjoive get

a(Wn, z — owy) + j(2) — j(dwy) > (In, 2 — dwy,), Vz=—¢€Z. (4.21)

ESB RSN
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Now, we indroduce the following set of step function@): For any sequencéz,},—=1. .y C Z and
ZN+1=0 W€ put

=z, for t,_1<t<tp,;n=1,...,N—1,
Z(t) = ZN for tn_1 <t <tp. (422)

Analogously we define the step function

z(t):L;”“ for th1<t<tpn=1,...,N—1,
ZN
Z(ﬁ) = 7 for tn_1 <t <tpn. (423)

We insert (4.23) into (4.21), multiply by and sum over. from 1 to N. Thus we get:

N N

N
Z ka(wn, (zn +22n+1) B 5w”) " Z kj((zn +22n+1)) B Z kj(5wn)
n=1 n=1 n=1
N
> 5"kl (Z”%“) — Suwn). (4.24)

n=1
Second stefEstimates for the step functions.

We estimate the different terms in (4.24) by the Rothe irgkztw” (), given by (4.15).
Integrating piecewise and merging the summands adequadehave forz, introduced by (4.22),
N T
ka(wn, %) _ / a(wh(t), (1)) dt. (4.25)
1 0

n=

Moreover, exploiting theZ-ellipticity of the bilinear forma(w, 2), that meana(z, z) > C||z||%, we get

N T
S ka(wn, 6w,) > / a(wk (t), ik (1)) dt. (4.26)
n=1 0

Due to the convexity of the second sum can be estimated

(o) +inen)) = [ eO) d=Gita).  @20)

WE
N | T

N
3 kgt ) o

n=1

The third sum can be rewritten as

N T
S kj(dwn) = / (it (1)) dt. (4.28)
n=1 0
It remains the estimate of the right hand side of (4.24). Agausly to (4.25) we get
N T
>kt Et 2y [k, 20 an, (4.29)
n=1 0

wherel*(t) is the piecewise linear interpolant §f, },,—o. . x. Using the estimate (4.12) we have

(I, S1) = /OT<lk(t),wk(t)> i+ 5 D (D, D) < /OT<lk(t),wk(t)> it + AL

n=1
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Now, due to Schwarz’ inequality it holds

tn . tn .
IALZ < (/ L li(7)]|zr dr)* < k/ ()1 dr,
t t

n—1 n—1
what leads finally to

T .
1

Zk(ln,éwn>§/o (IR (8, F (1)) dt+k:/0 % dr. (4.30)

n=1

Using the estimates (4.25),..., (4.30) inequality (4.24plies
/0 a(w® (1), 2(t) — W () + j(2(t)) = 3 (" (t)) = (I*(t), 2(t) — " (1)) dt

1, I
—5k3(21)+§ckz/0 Ii

(t)||%, dt > 0. (4.31)

Third step The limit inequality forw*= — w.

Corollary 1 guarantees that a subsequegne®e } of {w*} exists which weakly converges i ([0, 7], Z)
to the limit functionw. We insert such a subsequence into (4.31)

/0 a(w* (t), 2(t) — " (1) + §(2(1)) = (@™ () = (1" (), 2(t) — " (1)) dt

1 1 T
—5kmi (1) + 5k / li®)Z dt >0 (432)
0

It follows

m— 00

T
lim sup {/O a(w™ (t), 2(t) — Wb () + j(2(1) — (@™ (8)) — (1" (1), 2(t) — @™ (1)) dt} > 0.

Due to the assumption (4.19), the weakly lower semicontyrafij and the construction frodf~ as Rothe
sequence we get for any step function corresponding to ¢fpesites:,,, m = 1,2, ... the limitinequality

/0 a(w(t), 2(t) — (1)) + j(2(t)) — (@ () — (1), 2(t) — w(t)) dt > 0. (4.33)

Fourth step Estimation of the integrand of (4.33).

Consider an arbitrary € L?([0,7], Z). We can approximate by its piecewise averaging step functions
zkm  corresponding to the time step-sikg. Using the Lipschitz-continuity of, it follows that (4.33)
holds for anyz € L?([0,T], Z). Forty € (0,7) andh > 0 with to + h < T we define for an arbitrary
z€Z
z to <t <to+h,
26 = w(t) otherwise

We can see easily thaft) € L%([0,T], Z). Inserting in (4.33) implies that

1

to+h
B A=) +56) - ) — 40,2~ i) di >0

Applying the Lebesgue theorem, see [2], Thm. 5.21, p. 123yetdorh — 0
a(w(t), z —w(t)) +j(2) — j(w(t) = (U(t), z — w(t)) = 0,

which proves thatv is a solution of the original problem (4.10). O

25



Remark 2. If the bilinear forma is symmetric, estimate (4.19) is shown in [2] as follows:

T T
lim inf / a(whn (£), 4" (£)) dt = lim inf / Ld g (b (£), whn (1)) dt
0 0

= liminf La(w"" (T),w* (T)) >

m— 00

a(w(T),w(T)) /0 a(w(t),w(t)) dt.

Moreover, the uniqueness of the solution can be proved fangstric bilinear forms, see [2], p.165.

N[

If the solutions of the semi-discrete problem are suffidjestnooth with respect te and if furthermore
01, [ and( are sufficiently smooth, then (4.19) is satisfied. We can fateofollowing Lemma:
Lemma 4. Define for0 < ¢ < 1

Z° = [H () x H(Q) x [H(Q)I2)5 x [HO ().

Assume thaf2 has a smooth boundary. If there exists a constaimdependent of such that for one
0 < 0 < 1the estimates

[w¥[| 20,77, 29) < € (4.34)
" || L2 0,17, 20) < € (4.35)
hold true, estimate (4.19) is satisfied.

Proof. We have the compact imbedding
70 e Z,

see e.g. [13], Thm. 7.9, p. 123. Thus, we know that
H'([0,T), 2°) —— L*([0, T}, Z),

see [9], Lemma 3.74 (Aubin, Lions), p. 121. Analogously tad@lary 1 it follows from (4.34) and (4.35)
that there exists a subsequeitkg, )<y of time steps and a functian € H'([0, T, Z°) such that

whm —w in H([0,T7], Z%). (4.36)
Due to the compact imbeddings, it follows that
wh™ —w in L2([0,T), Z). (4.37)
Thus we get
T T
| atwrn @it @) de = [ ot @) - wo. it 0) di
0 0
. (4.38)
+/ a(w(t),wh (t)) dt
0
and
T T
| atutr @ = v ite @y ar<e [ pte @ —wll it ol e o
< cfjwhm — wHLZ([O.,T],Z)Hwkm 220,77, 2)-
Then, (4.37), (4.38) and (4.39) imply
T T
lim a(whn (), Wk (1)) dt = / a(w(t),w(t)) dt,
and this implies (4.19). O

Remark 3. The condition thaf) has a smooth boundary can be replaced by suitable cone pieper

We underline, that in [5] a symmetric piezoelectric operédaonsidered. There is proved the existence
and uniqueness of the linear problem. Whether this is indged/alent to our variatonal inequality should
be investigated.
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