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Modeling of ferroelectric hysteresis as variational inequality

Michael Kutter∗, Anna-Margarete Sändig†

Abstract

Ferroelectric materials are characterized by interaction-effects of mechanical and electrical fields due to
different polarisation directions of the unit cells. The relations between polarisation and electric field and
mechanical strain and electric field respectively can be described by hysteresis curves. Some models,
which describe the ferroelectric material behaviour, e.g.[4], [10], rely on concepts close to elastoplastic-
ity. We use these ideas and derive variational evolution inequalities analogously to elastoplastic models
discussed in [2]. Based on these inequalities we formulate equivalent mathematical problems and get
some existence results. The formulation of variational evolution inequalities is a good starting point for
numerical methods similar to elastoplasticity.

Keywords: Ferroelectric hysteresis, Variational inequality, Principle of maximum dissipation

AMS Subject Classification:

1 Introduction

Piezoelectric materials are widely used in electromechanical sensors and actuators, e.g. in accustic devices
as microphones, in ultrasonic transducers for medical imaging, in fuel injectors of diesel engines or in
high-precision positioners. In particular, piezoceramics are very important for actuator applications, since
they show short response times. Moreover, considerable forces can be induced by small electric fields due
to the strong inverse piezoelectric effect. Barium titanate (BaTiO3) and lead zirconate titanate (PZT) are
the most prominent materials in this class; BaTiO3 is mainly interesting for scientific research, PZT is
commonly used for technical applications.

Piezoceramics belong to the class of ferroelectric materials. Hysteresis phenomena occur due to the fact
that the polarisation in the unit cells can be influenced by anexternal electric field. For small fields this
effect does not occur and the theory for linear piezoelectricity leads to good simulation results. For larger
fields this is not true any more and because this cannot be neglected for a permanently growing range of
applications, it becomes more and more important to study these phenomena.

The increasing economic relevance induced a lot of researchactivities in the last years. There are different
approaches to model ferroelectric material behaviour. In microscopic models the switching behaviour of
the polarization directions for polycrystals is investigated, see e.g. [3], [7]. The major drawback of these
models is the computational effort required for the simulation of macroscopic devices. Another approach
are thermodynamically consistent macroscopic models. There, a phenomenological description is favoured
where hysteresis curves characterize the relations between polarisation and electric field and mechanical
strain and electric field respectively. In [4] and [10], two similar models of this type are presented, which
are based on concepts developed in the late 1980s. One can compare these models with the theory for
elasto-plastic hysteresis phenomena since the basic ideasare very similar. Besides coupled field equations
for the mechanical and electric fields evolution equations for internal variables occur. This mathematical
structure resembles models in viscoplasticity, see [1].

∗Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Ger-
many, (Michael.Kutter@ians.uni-stuttgart.de)

†Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Ger-
many, (saendig@ians.uni-stuttgart.de)
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In this paper we follow ideas of elasto-plasticity, see [2],and formulate a class of ferroelectric models as
variational inequality. The model of [10] is included. We use the principle of maximum dissipation for the
mechanical and electric thermodynamic forces. Adding the resulting inequality to the weakly formulated
field equations we derive variational inequalities for mechanical displacement and electric potential fields
as well as for the remanent strain and polarisation fields. The resulting variational inequalities model the
ferroelectric hysteresis as an evolution process and are suitable for numerical computations. We discuss
the existence of solutions in appropriate function spaces for linear and nonlinear models which are given
by different choices of the enthalpy function. In general, the problem is equivalent to a doubly nonlinear
one. Problems of this type are investigated in [8], [11] and especially for the ferroelectric model in [5].

The paper is organised as follows: Section 2 explains shortly the physical background for piezo- and
ferroelectricity and remind the reader of the linear model for piezoelectricity. Especially, we focus on the
material structure of piezoceramics and discuss the hysteresis curves for the polarisation and the strain.
Then, we present the model which was suggested in [10] and discuss in particular the special choice of the
electric enthalpy functional. In section 3, our variational formulation is mathematically derived in detail.
The problem is stated as variational inequality in appropriate function spaces. Section 4 treats the existence
of solutions for our problem. We first consider the general case, which leads to a doubly nonlinear problem,
before we turn to a simplified case where the electric enthalpy is a quadratic form.

2 A model for ferroelectric hysteresis

In this section, we derive a model for ferroelectric hysteresis phenomena, which is based on ideas that are
used in elasto-plasticity. For the elasto-plastic theory,we refer to [2], the ferroelectric model was presented
in [10], a similar one in [4]. But before we start to discuss the details, we will first have a look on the
physical background, especially on the microstructure of ferroelectric materials. We refer to [4] where this
is discussed more detailed.

2.1 Physical background and coupled field equations

Ferroelectricity is, as well as piezoelectricity, an electromechanical coupling effect. The reason for the
interaction between mechanical and electric fields lies in the microstructure of the material. Ferroelectric
materials have a crystalline microstructure, where unit cells are positioned in a periodic lattice. Each unit
cell consists of positively and negatively charged ions. Although the total electric charge of each unit cell
is zero, the centers of positive and negative charges need not to be at the same place. The position of these
centers with respect to each other is very important for the electromechanical properties of the material. If
they can be shifted against each other by an external load, the material is calledpolarisable. A displacement
of the centers of charges builds an electric dipole and if such a dipole exists without any external load, the
unit cell posesses aspontaneous polarisation, see figure 1(b). This is the case for ferroelectric materials as
for example barium titanate below the Curie temperature, see figure 1(a).

The asymmetry caused by the shift of the charges can be described by apolar axis, e.g. the z-axis in figure
1(a). A rotation by 180◦ with a rotation axis perpendicular to the polar axis leads toanother configuration
as the initial situation. If there exists such a polar axis ina polarisable material, an external mechanical load
in the direction of the polar axis displaces the ions againsteach other and induces an electric field. This
is the (direct) piezoelectric effect which was discovered by Pierre and Jacques Curie in 1880. The inverse
effect also exists: an external electric field parallel to the polar axis causes a deformation of the unit cells:
compression in one and dilatation in the opposite direction. Both, the direct and the inverse piezoelectric
effect have many technical applications, especially as sensors and actuators.

The piezoelectric effect can be described by a well known linear model which was suggested by Woldemar
Voigt in 1910, see [12]: As mechanical quantities, we consider the dispacement fieldu, the linearised strain
tensor

ε =
1

2

(
∇u + (∇u)T

)
,

7



(a) The unit cell of barium titanate below the Curie
temperature

(b) Spontaneous polarisation of a unit cell

Figure 1: The structure of ferroelectric materials

and the Cauchy stress tensorσ. The electric quantities are the electric potentialϕ, the quasi-static electric
field E given by

E = −∇ϕ,

and the dielectric displacementD. The piezoelectric effect is described by the force balance

− div σ = f, (2.1)

wheref is a given external load, and by
div D = 0, (2.2)

which is one of Maxwell’s equations. In general, the densityof the free electric charges occurs on the right
hand sight of equation (2.2), but here, we assume that the material is an ideal dielectric and thus, all electric
charges are bound in the lattice. The model is completed by linear constitutive relations:

σ = cε − e
⊤E, (2.3)

D = eε + ǫE. (2.4)

c is the elastic tensor,ǫ the dielectric tensor ande the piezoelectric coupling tensor.

For many applications, this linear model turned out to be a very good description of the piezoelectric effect.
But for piezoceramics as barium titanate and lead zirconatetitanate ferroelectric hysteresis phenomena play
an important role for technical applications and these effects are not covered by the linear model.

Figure 2: Domain structure in ferroelectric materials ([4], S.225)

In order to understand what happens with these materials we have to look again at the microstructure, but
on a larger scale as before. Ferroelectrics are polycrystalline materials, that means that several unit cells

8



together build adomain, see figure 2. Inside one domain, the dipoles of the single unit cells point in the
same direction. For completeness, it should be mentioned that several domains build a so-calledgrain, but
this is not important at the moment. It is characteristic forferroelectrics that the direction of the dipoles of
the domains can be shifted by an external load. This process is partly irreversible and that is why hysteresis
phenomena occur.
For technical applications which use the piezoelectric properties of a material, it is crucial that there exisists
a macroscopic polar axis. In general, this it not the case forpiezoceramics, since the orientations of the
domains are randomly distributed, but a polar axis can be created by shifting the domains by an external
field. As we can see, the dipoles of the unit cells play a very important role here and thus, we have to
integrate that fact into the model. First, we define the dipole moment: Consider two electric charges+q

and−q and the displacement vector
−→
d , pointing from−q to +q. Then, the dipole momentp is defined by

p = q
−→
d .

The model in [4] and [10] is a macroscopic model and thus, the dipole moment is not a usefull quantity
here, since we have one in every unit cell. Therefore, we assume the existence of a density function for the
dipoles, thepolarisationP , such that for everyω ⊂ R

3 the total dipole moment inω is given by

p =

∫

ω

P (x) dx.

As mentioned before, the orientation of the dipoles in the domains can be shifted by a sufficiently large
external load, e.g. by an electric field. The polarisation follows a hysteresis curve, see figure 3. Here, the

Figure 3: Hysteresis curve of the polarisation ([4], S.236)

electric field points inx3-direction. Figure 3 shows the componentsE3 andP3 and means:

• Initial configuration (1©): The orientations of the dipoles in the domains are randomly distributed
such that there is no macroscopic dipole moment.

• If |E| exceeds a critical value, the domains begin to switch until the polarisation in all domains points
almost in the same direction as the external field and a saturation is reached (2©). This process is
partly irreversible.

• After turning off the external electric field, theremanent polarisationremains (3©). This state is
important for technical applications, since there is a macroscopic dipole moment in absence of an
external field. For small loads, the behaviour of the material can be described by the linear model for
the piezoelectric effect.

• Application of a sufficiently large electric field in the opposite direction causes the polarisation to
vanish at (4©) until it reaches a saturation again at (5©).

• When turnig off the electric field, we can see that the remanent polarisation remains again, but in the
other direction (6©).

9



Figure 4: Butterfly hysteresis curve of the strain ([4], S.237)

Associated with the switching of the polarisation is a mechanical deformation. That is why the strain also
follows a hysteresis loop during this process. Figure 4 shows the componentsε33 of the strain tensor and
E3 of the electric field and can be interpreted as follows:

• The reference configuration (1©): The displacement field and the strain vanish.

• As before, the domains begin to switch when|E| reaches a critical value. The material expands until
a saturation is reached, i.e. the polarisation in all domains points almost in the same direction as the
external field (2©). Again this process is partly irreversible.

• A remanent strain remains, if the electric field is turned off( 3©).

• After applying a sufficently large electric field in the opposite direction, the strain vanishes first (4©)
until it reaches a saturation again (5©). In contrast to the polarisation the saturation of the strain is
independent of the direction of the external field.

• The remanent strain remains again after turnig offE ( 6©).

2.2 The model

The basic idea for the model is that both the strainε and the polarisationP can be split additively into
elastic partsεe, P e and remanent partsεr, P r:

ε = εe + εr,

P = P e + P r.

This leads to an additive splitting ofD:

D = ǫ0E + P = ǫ0E + P e

︸ ︷︷ ︸

=:De

+P r.

The remanent variablesεr and P r can be interpreted as inner variables. In order to derive evolution
equations forεr andP r, we consider the electric enthalpyH as a thermodynamic potential. As unkown
variables we consider the mechanical displacementu and the electric potentialϕ, as it is often done in the
linear piezoelectric model, andεr andP r. Thus,H is assumed to be dependent of these unkowns, i.e.

H = H(ε, εr, E, P r).

Due to the irreversibility of the processes, some energy gets lost (dissipation). We consider the second law
of thermodynamics which leads here to the so-calleddissipation inequality:

D = σ : ε̇ − D · Ė − Ḣ ≥ 0. (2.5)

10



A formal calculation of the time derivativėH in (2.5) yields

D = (σ −
∂H

∂ε
) : ε̇ − (D +

∂H

∂E
) · Ė −

∂H

∂εr
: ε̇r −

∂H

∂P r
· Ṗ r ≥ 0. (2.6)

Note that ’·’ denotes the usual scalar product of vectors inR
n, and ’:’ stands for the scalar product of

matrices inRn×n:

a · b =

n∑

i=1

aibi, A : B =

n∑

i,j=1

aijbij .

Inequality (2.6) has to be satisfied for all possible processes, especially for reversible ones whereεr = 0
andP r = 0. But for these processes, the inversion is also allowed and thus the following constitutive
relations hold true:

σ =
∂H

∂ε
, (2.7)

D = −
∂H

∂E
. (2.8)

As a condition for the electric enthalpy we assume that the elastic partsεe andDe satisfy the linear consti-
tutive equations (2.3) and (2.4), i.e.

σ = c(ε − εr) − e
T E, (2.9)

D − P r = e(ε − εr) + ǫE. (2.10)

Due to (2.6), (2.7) and (2.8) we get the reduced dissipation inequality

D = σ̃ : ε̇r + Ẽ · Ṗ r ≥ 0, (2.11)

where

σ̃ := −
∂H

∂εr
, (2.12)

Ẽ := −
∂H

∂P r
(2.13)

denote thethermodynamic forces. We useσ̃ andẼ to formulate a criterion to decide wether a process is
irreversible or not. Again we orient ourselves by the elasto-plastic theory and define a yield function and a
yield surface:

Definition 1 (Yield function und yield surface). Let S ⊂ S3×3 × R
3 be a convex and closed set and

0 ∈ int(S). We call the boundary∂S yield surface. Furthermore, we assume thatS can be described
by a functionφ : S3×3 × R

3 → R, theyield function, such that

• int(S) = {(σ̃, Ẽ) ∈ S3×3 × R
3 : φ(σ̃, Ẽ) < 0} ,

• ∂S = {(σ̃, Ẽ) ∈ S3×3 × R
3 : φ(σ̃, Ẽ) = 0} .

The physical interpretation is the following:

• φ(σ̃, Ẽ) < 0: The material behaviour is reversible.

• φ(σ̃, Ẽ) = 0: The process is (partly) irreversible.

• φ(σ̃, Ẽ) > 0: These states are not allowed.

It should be mentioned that the previous definition of the yield surface is given for fixedx ∈ Ω and
t ∈ [0, T ]. In particular, yield surface and yield function can vary inx andt.

11



We return to the reduced dissipation inequality (2.11). Theexpression on the left hand sight can interpreted
as the rate of energy that gets lost during the process. In order to describe this in detail, we apply a well
known principle, theprinciple of maximum dissipation, which reads as follows:
For fixedε̇r andṖ r, the thermodynamic forces are given in such a way that the expression

σ̃ : ε̇r + Ẽ · Ṗ r

of the right hand sight of (2.11) gets maximal, i.e.

D(ε̇r, Ṗ r) = σ̃(ε̇r, Ṗ r) : ε̇r + Ẽ(ε̇r, Ṗ r) · Ṗ r = max
(ς̃,Ẽ)∈S

{ς̃ : ε̇r + Ẽ · Ṗ r}. (2.14)

Since the setS is defined pointwise forx ∈ Ω, this principle has also to be understood pointwise. IfS is
bounded and thus compact, there exists a state(σ̃, Ẽ) which realise the maximum of the dissipation. We
will later suppose, that the setsS(x) are even uniformly bounded inΩ. In this case, there exist functions
σ̃(x), Ẽ(x) ∈ L2(Ω) such that the maximum above is realised for everyx ∈ Ω.
With the help of the principle of maximum dissipation it is possible to derive evolution equations:

Theorem 1. Assume the principle of maximum dissipation (2.14) to hold.Furthermore, suppose that the
setS ⊂ S3×3 × R

3 has a smooth boundary. Then the associated flow rules hold true:

ε̇r = λ̃
∂φ

∂σ̃
= λn, (2.15)

Ṗ r = λ̃
∂φ

∂Ẽ
= λm, (2.16)

whereλ = λ(σ̃, Ẽ) is a nonnegative factor and(n,m) an outer normal vector on∂S.

Proof. (see e.g. [10])
We define the Lagrangian functional onS

L(σ̃, Ẽ, λ̃) = −D(σ̃, Ẽ) + λ̃φ(σ̃, Ẽ) = −σ̃ : ε̇r − Ẽ · Ṗ r + λ̃φ(σ̃, Ẽ),

whereλ̃ ∈ R is a nonnegative Lagrange multiplier. The method of Lagrange multipliers with the constraint
φ(σ̃, Ẽ) ≤ 0 leads to the conditions

∂L

∂σ̃
= −ε̇r + λ̃

∂φ

∂σ̃
= 0,

∂L

∂Ẽ
= −Ṗ r + λ̃

∂φ

∂Ẽ
= 0,

and
λ̃φ(σ̃, Ẽ) = 0.

Since∂S is described by the equationφ(σ̃, Ẽ) = 0 with a smooth functionφ and since the gradient is
perpendicular to level sets and points in the direction of the steepest slope, equations (2.15) and (2.16) hold
true with a rescaled factorλ(σ̃, Ẽ).

The conditions

• λ ≥ 0 ,

• φ(σ̃, Ẽ) ≤ 0 ,

• λφ(σ̃, Ẽ) = 0 ,

from above are calledKarush-Kuhn-Tucker conditions.
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We summarise the model: We have the balance equations

− div σ = f, (2.17)

div D = 0, (2.18)

the evolution equations

ε̇r = λ̃
∂φ

∂σ̃
, (2.19)

Ṗ r = λ̃
∂φ

∂Ẽ
, (2.20)

the constitutive relations

σ =
∂H

∂ε
= c(ε − εr) − e

T E, (2.21)

D = −
∂H

∂E
= e(ε − εr) + ǫE + P r, (2.22)

and the relations

σ̃ = −
∂H

∂εr
, (2.23)

Ẽ = −
∂H

∂P r
, (2.24)

ε = εe + εr, (2.25)

P = P e + P r. (2.26)

2.3 A special choice for the electric enthalpyH and the yield function φ

As explained above, the electric enthalpy should satisfy the constitutive equations (2.7), (2.8), (2.9) and
(2.10). In the simpliest caseH is a quadratic form. In [10], Schröder/Romanowski choose the following
form:

H =H(ε, εr, E, P r)

=
1

2
c(ε − εr) : (ε − εr) −

1

2
ǫE · E − E · e(P r)(ε − εr) − E · P r + f(P r).

(2.27)

Schröder/Romanowski suggest for the hardening termf that

f(P r) = (P r · a)Artanh

(
P r · a

Ps

)

+
Ps

2
ln

(

1 −

(
P r · a

Ps

)2
)

.

Here,Ps ∈ R is a saturation for|P r| anda ∈ R
3 is the direction of the polar axis with|a| = 1. Note that

f depends only onP r and not onεr. The derivative

∂f(P r)

∂P r
= Artanh

(
P r · a

Ps

)

a

models the dependence between the effective electric field and the polarisation due to

Ẽ = −
∂H

∂P r
=

∂

∂P r
[E · e(P r)(ε − εr)] + E −

∂f(P r)

∂P r

which is equivalent to
∂f(P r)

∂P r
=

∂

∂P r
[E · e(P r)(ε − εr)] + E − Ẽ,

in agreement with figure 3.
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Remark 1. It should be mentioned here that the piezoelectric tensore can depend onP r.

The yield function in [10] has the form (compare a von-Mises yield function in elasto-plasticity)

φ(σ̃, Ẽ) = Ẽ · Ẽ − E2
c ,

i.e. φ does not depend oñσ. Ec is the coercive field strength, which is the critical value for |E| at which
the polarisation in the domains begin to switch.

But there are some problems with these choices forH andφ: There is no hardening term inH which
models the butterfly hysteresis curve for the strain, see figure 4. Furthermore, the evolution equation (2.15)
now reads

ε̇r = λ̃
∂φ

∂σ̃
= 0,

due to the fact thatφ is independent of̃σ. That implies, that the strain does not show any irreversible
behaviour and that is not true. Following the ideas of [6] and[10], one can solve this problem by replacing
the evolution equation (2.15) by a constitutive law of the form

εr =
εr
a

P 2
s

dev(P r ⊗ P r),

whereεr
a

is the saturation forεr in the polarisation directiona. Again, this modeling is not unquestioned
and we refer to [6] for a more detailed discussion. However, some simulation results can be found in [10].

In the next section we will present a variational formulation for the model. We will not use the evolution
equations (2.15) and (2.16), but the principle of maximum dissipation which led to these equations. Fur-
thermore, we will allow a more general form for the electric enthalpyH which also contains hardening
terms depending onεr.

3 Variational formulation

In this section we present a variational formulation to our model for ferroelectric hysteresis relying on ideas
which model elasto-plastic behaviour of materials as variational inequalities, compare [2].

3.1 Function spaces

Let Ω× [0, T ] ⊂ R
3×R

+ be a domain whereΩ has a Lipschitz-boundary∂Ω. On this domain we consider
the momentum balance equations

− div σ(x, t) = f(x, t), (3.1)

div D(x, t) = 0, (3.2)

where the vector functionf is a given volume force density. The boundary∂Ω is splitted into Dirichlet and
Neumann parts, corresponding to mechanical(i = 1) or electric loads(i = 2) :

∂Ω = γNi
∪ γDi

,

whereγNi
∩ γDi

= ∅ and |γDi
| > 0 for i = 1, 2. As unknown variables we have the mechanical

displacement fieldu and the electric potentialϕ, which satisfy the boundary conditions

u(·, t) = 0 onγD1
,

σn = g1 onγN1
,

ϕ(·, t) = 0 onγD2
,

D · n = g2 onγN2
,

14



whereg1 andg2 are given. With respect to the space variablex we suppose for a fixedt

u(·, t) ∈ V1 := {[H1(Ω)]3 : u|γD1
= 0},

ϕ(·, t) ∈ V2 := {H1(Ω) : ϕ|γD2
= 0}.

As before, the strain tensor and the electric field are definedby

ε(u) =
1

2
(∇u + (∇u)T ),

E(ϕ) = −∇ϕ,

and we assume an additive splitting ofε andP

ε = εe + εr,

P = P e + P r,

where the remanent quantitiesεr andP r as well as their time derivativeṡεr andṖ r belong for fixedt to
the following spaces:

εr(·, t), ε̇r(·, t) ∈ Q1 := [L2(Ω)]3×3,

P r(·, t), Ṗ r(·, t) ∈ Q2 := [L2(Ω)]3.

In addition, we have the constitutive equations

σ =
∂H

∂ε
= c(ε − εr) − e

T E, (3.3)

D = −
∂H

∂E
= e(ε − εr) + ǫE + P r. (3.4)

For the components of the material tensorsc, e andǫ we suppose that

cijkl , ǫij , eijk ∈ L∞(Ω),

and that the tensorsc andǫ are positive definite, i.e. there exist constantsc0 > 0, ǫ0 > 0 such that

cε : ε ≥ c0|ε|
2, ∀ε ∈ S3×3,

ǫE · E ≥ ǫ0|E|2 ∀E ∈ R
3.

Note thatσ ∈ Q1, D ∈ Q2. Furthermore, we consider symmetric material tensorsc, ǫ ande , that means

cijkl = cklij , cijkl = cjikl, eijk = ejik, ǫij = ǫji.

We define the spaceZ by
Z = V1 × V2 × Q1 × Q2.

Z is a Hilbert space with the scalar product

(w, z)Z = (u, v)V1
+ (ϕ, ϑ)V2

+ (ε, q)Q1
+ (P, T )Q2

,

for w = (u, ϕ, ε, P ), z = (v, ϑ, q, T ) and with the usual scalar products of the particular spaces on the
right hand sight of the equation. Together with the spaceH = [L2(Ω)]3×L2(Ω)× [L2(Ω)]3×3× [L2(Ω)]3,
(Z, H, Z ′) is a Gelfand’s triple. Here,Z ′ denotes the dual space. Taking the time into account, we assume
w to be an element ofH1([0, T ], Z). As initial condition we suppose that

w(0) = 0.
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3.2 Derivation of the variational inequality

We derive a variational inequality in appropriate functionspaces, adding an inequality based on the princi-
ple of maximum dissipation to a weakly formulated boundary value problem.

We remind of theprinciple of maximum dissipation (2.14):
For fixed stateṡεr, Ṗ r the thermodynamical forces̃σ(ε̇r, Ṗ r), Ẽ(ε̇r, Ṗ r) are given by

D(ε̇r, Ṗ r) = σ̃(ε̇r, Ṗ r) : ε̇r + Ẽ(ε̇r, Ṗ r) · Ṗ r = max
(ς̃,Ẽ)∈S

{ς̃ : ε̇r + Ẽ · Ṗ r}.

For an arbitrary state(q, T ) ∈ Q1 × Q2 holds analogously

D(q, T ) = σ̃(q, T ) : q + Ẽ(q, T ) · T = max
(ς̃,Ẽ)∈S

{ς̃ : q + Ẽ · T }.

It follows from the maximum-property that

D(q, T ) = σ̃(q, T ) : q + Ẽ(q, T ) · T

= max
(ς̃,Ẽ)∈S

{ς̃ : q + Ẽ · T } ≥ σ̃(ε̇r, Ṗ r) : q + Ẽ(ε̇r, Ṗ r) · T.

Adding and subtractingD(ε̇r, Ṗ r) we get finally

D(q, T ) ≥ D(ε̇r, Ṗ r) + σ̃ : (q − ε̇r) + Ẽ · (T − Ṗ r), ∀(q, T ) ∈ Q1 × Q2,

and after integration overΩ
∫

Ω

D(q, T ) dx ≥

∫

Ω

D(ε̇r, Ṗ r) dx +

∫

Ω

σ̃ : (q − ε̇r) + Ẽ · (T − Ṗ r) dx. (3.5)

Now, we consider aweak formulation of the momentum balance equation

− div σ = f.

Taking the scalar product of this equation with(v − u̇), wherev ∈ V1, and integrating overΩ we get
∫

Ω

(c(ε − εr) − e
T E) : (ε(v) − ε(u̇)) dx

=

∫

Ω

f · (v − u̇) dx +

∫

γN1

g1 · (v − u̇) dx.
(3.6)

Analogously we multiply the electric balance equation

div D = 0

with (β − ϕ̇), β ∈ V2, and integrate overΩ
∫

Ω

(e(ε − εr) + ǫE + P r) · (E(β) − E(ϕ̇)) dx =

∫

γN2

g2(β − ϕ̇) dx. (3.7)

Adding (3.5), (3.6) and (3.7) we get the inequality
∫

Ω

(c(ε − εr) − e
T E) : (ε(v) − ε(u̇)) dx

+

∫

Ω

(e(ε − εr) + ǫE + P r) · (E(β) − E(ϕ̇)) dx

+

∫

Ω

∂H

∂εr
: (q − ε̇r) +

∂H

∂P r
· (T − Ṗ r) dx

+

∫

Ω

D(q, T ) −D(ε̇r , Ṗ r) dx

≥

∫

Ω

f · (v − u̇) dx +

∫

γN1

g1 · (v − u̇) da +

∫

γN2

g2(β − ϕ̇) da.

(3.8)
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We define forw = (u, ϕ, εr, P r) andz = (v, β, q, T ), and for fixedt,

〈Aw, z〉 =

∫

Ω

(c(ε(u) − εr) − e
T E(ϕ)) : ε(v) dx

+

∫

Ω

(e(ε(u) − εr) + ǫE(ϕ) + P r) · E(β) dx

+

∫

Ω

∂H

∂εr
: q +

∂H

∂P r
· T dx, (3.9)

j(z) =

∫

Ω

D(q, T ) dx, (3.10)

〈l(t), z〉 =

∫

Ω

f(t) · v dx +

∫

γN1

g1(t) · v da +

∫

γN2

g2(t)β da. (3.11)

Let us make some remarks to the properties of the operatorsA, j andl.

• The operatorA : Z → Z ′ consists of a linear part and a nonlinear one. The nonlinearity is generated
by the enthalpyH .

• The functionalj : Q1×Q2 ⊂ Z → IR∪{±∞} is positively homogeneous, that meansj(cz) = cj(z)
for all c > 0. Furthermore,j is convex, that means, forλ ∈ (0, 1) and all(z1, z2) ∈ Q1 × Q2 holds

j(λz1 + (1 − λ)z2) ≤ λj(z1) + (1 − λ)j(z2).

This follows immediately from the principle of maximal dissipation, since forzi = (qi, Ti), i = 1, 2,
holds

D(λz1 + (1 − λ)z2) = max
(ς̃,Ẽ)∈S

{ς̃ : (λq1 + (1 − λ)q2) + Ẽ · (λT1 + (1 − λ)T2)}

= Π1 : (λq1 + (1 − λ)q2) + Π2 · (λT1 + (1 − λ)T2)

≤ λD(q1, T1) + (1 − λ)D(q2, T2).

Moreover, the functionalj is lower semicontinuous, that means, ifzn → z, then
lim infn→∞j(zn) ≥ j(z). Indeed, forzn = (qn, Tn) we have

D(zn) = max
(ς̃,Ẽ)∈S

{ς̃ : qn + Ẽ · Tn}

= Π1,n : qn + Π2,n · Tn

≥ Π1 : qn + Π2 · Tn,

where(Π1, Π2) are the states which realize the maximum inD(z). Going to the limit, we get after
integration the lower semicontinuity ofj.

• If we assume that the setsS(x) of all allowed states are uniformly bounded, i.e.

S(x) ⊂ BR(0S3×3×R3)

with R > 0 independent ofx, thenj is Lipschitz continuous. We can proof this as follows:
Let z1 = (v1, β1, q1, T1), z2 = (v2, β2, q2, T2) ∈ Z. As mentioned before, there exist functions
(s1, E1), (s2, E2), such that

D(s1(x), E1(x)) = s1(x) : q1(x) + E1(x) · T1(x),

D(s2(x), E2(x)) = s2(x) : q2(x) + E2(x) · T2(x),
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and(si(x), Ei(x)) ∈ S(x), i = 1, 2. For fixedx ∈ Ω, let be without loss of generality
D(s1(x), E1(x)) ≥ D(s2(x), E2(x)). It follows

|s1(x) : q1(x) + E1(x) · T1(x) − s2(x) : q2(x) − E2(x) · T2(x)|

≤ s1(x) : q1(x) + E1(x) · T1(x) − s1(x) : q2(x) − E1(x) · T2(x)

≤ |(s1(x), E1(x))||(q1(x), T1(x)) − (q2(x), T2(x))|

≤ R|(q1(x), T1(x)) − (q2(x), T2(x))|.

Here,| · | denotes the Euclidian norm onS3×3 × R
3. SinceΩ is bounded, we have

‖(si, Ei)‖L1(Ω) ≤ C‖(si, Ei)‖L2(Ω).

It follows that

|j(z1) − j(z2)| ≤

∫

Ω

|D((s1, E1)(x)) −D((s2, E2)(x))| dx

≤ R

∫

Ω

|(s1(x), E1(x)) − (s2(x), E2(x))| dx

≤ RC · ‖(s1, E1) − (s2, E2)‖L2(Ω)

= RC · ‖z1 − z2‖Z

and thus the Lipschitz-continuity.

• If we assume that for fixed timet the mechanical volume force densityf ∈ V ′
1 and that the mechani-

cal and electric Neumann boundary datag1 ∈ [H− 1

2 (γN1
)]3 andg2 ∈ H− 1

2 (γN2
), then the mapping

l : V1 × V2 ⊂ Z → IR is linear and continuous and represents the exterior loads.Note, that we have
to understand the integrals as dual pairing; usual integrals occur, iff, g1, g2 areL2-functions onΩ
or onγNi

, i = 1, 2, respectively.

Now, we formulate theVariational inequality problem :

Find w = (u, ϕ, εr, P r) ∈ H1([0, T ], Z) with w(0) = 0, such that for allz ∈ Z and almost allt ∈ [0, T ]
holds:

〈Aw(t), z − ẇ(t)〉 + j(z) − j(ẇ(t)) ≥ 〈l(t), z − ẇ(t)〉. (3.12)

3.3 Remarks to the choice of the enthalpy function

To ensure that the variational inequality is well-defined weassume

∂H

∂P r
∈ [L2(Ω)]3, (3.13)

∂H

∂εr
∈ [L2(Ω)]3×3. (3.14)

If we consider an electric enthalpy of the form

H = H(ε, εr, E, P r) =
1

2
c(ε−εr) : (ε−εr)−

1

2
ǫE·E−E·P r−E·e(P r)(ε−εr)+f(P r)+g(εr), (3.15)

these conditions are equivalent to

∂f

∂P r
∈ [L2(Ω)]3, (3.16)

∂g

∂εr
∈ [L2(Ω)]3×3. (3.17)
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In this case the reversible partsσ = ∂H
∂ε

andD = −∂H
∂E

+ P r satisfy the linear constitutive equations
(2.9) and ( 2.10). The electric enthalpy considered by Schr¨oder/Romanowski in [10] satisfies the condition
(3.13), if

P r · a ≤ Ps − δ, a.e. inΩ for a fixedδ > 0.

The hysteresis curve of the polarisation, see figure 3, holdsapproximately in this case. In order to guarantee
that the butterfly hysteresis curve of the strain, see figure 4, holds, too, we have to specify the quantities
e(P r), g(εr) and the yield functionφ. As mentioned before, another possibility is to consider additional
constitutive equations, e.g. as in [6].

4 Solvability of the variational inequality

In general, the variational inequality (3.12) is nonlinearin w and ẇ and belongs to the class of doubly
nonlinear problems. We will give some equivalent formulations, which facilitate the reading of the corre-
sponding literature. For this we bring the definition of a subdifferential to mind:

Definition 2. Let V be a real Banach space andF : V → [−∞,∞] a functional onV . An element
u∗ ∈ V ′ is called subgradient ofF at u ∈ V , if F (u) 6≡ ±∞ and

F (v) ≥ F (u) + 〈u∗, v − u〉 ∀v ∈ V.

The set of all subgradients atu is called subdifferential and is denoted by∂F (u). If no subgradient exists
at u, then we put∂F (u) = ∅.

4.1 Equivalent formulations

Lemma 1. Let beA : Z → Z ′, j : Z → IR and l → IR the operators defined by (3.9), (3.10) and (3.11).
The following problems are equivalent

1. Find an elementw ∈ H1([0, T ], Z) with w(0) = 0, such that for almost allt ∈ (0, T ) holds:

〈Aw(t), z − ẇ(t)〉 + j(z) − j(ẇ(t)) ≥ 〈l(t), z − ẇ(t)〉, ∀z ∈ Z.

2. Find an elementw ∈ H1([0, T ], Z) with w(0) = 0 and an elementw∗ ∈ H1([0, T ], Z ′), such that
for almost allt ∈ (0, T ) holds:

〈Aw(t), z〉 + 〈w∗(t), z〉 = 〈l(t), z〉, ∀z ∈ Z,

w∗(t) ∈ ∂j(ẇ(t))

or shorter
l(t) ∈ Aw(t) + ∂j(ẇ(t)).

3. Find an elementw ∈ H1([0, T ], Z) with w(0) = 0 and an elementw∗ ∈ H1([0, T ], Z ′), such that
for almost allt ∈ (0, T ) holds:

〈Aw(t), z〉 + 〈w∗(t), z〉 = 〈l(t), z〉, ∀z ∈ Z,

〈w∗(t), z〉 ≤ j(z), ∀z ∈ Z,

〈w∗(t), ẇ(t)〉 = j(ẇ(t)).

Proof. First step 1. ⇒ 2.
We consider a solutionw ∈ H1([0, T ], Z) of problem1., that means

〈Aw(t), z − ẇ(t)〉 + j(z) − j(ẇ(t)) ≥ 〈l(t), z − ẇ(t)〉, ∀z ∈ Z. (4.1)

We definew∗(t) ∈ H1([0, T ], Z ′) through

〈w∗(t), z〉 = −〈Aw(t), z〉 + 〈l(t), z〉.
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From inequality (4.1) follows

〈w∗(t), z − ẇ(t)〉 ≤ j(z) − j(ẇ(t)), ∀z ∈ Z,

and therefore we have
w∗(t) ∈ ∂j(ẇ(t)).

The elementsw undw∗ satisfy problem 2.
Second step2. ⇒ 3.
Assume thatw ∈ H1([0, T ], Z) andw∗ ∈ H1([0, T ], Z ′) solve problem 2. Sincew∗(t) ∈ ∂j(ẇ(t)) it
holds

j(z) ≥ j(ẇ(t)) + 〈w∗(t), z − ẇ(t)〉, ∀z ∈ Z. (4.2)

We show by contradiction that
〈w∗(t), ẇ(t)〉 = j(ẇ(t)).

First, we assume
〈w∗(t), ẇ(t)〉 > j(ẇ(t)).

Then, it follows for almost all fixedt ∈ [0, T ] and forz = 2ẇ(t) from (4.2) due to the positive homogenity
of j

0 > j(ẇ(t)) − 〈w∗(t), ẇ(t)〉 ≥ 0,

what cannot be.
Now, we assume

〈w∗(t), ẇ(t)〉 < j(ẇ(t)).

Then we get forz = 0 from (4.2) that

0 ≥ j(ẇ(t)) − 〈w∗(t), ẇ(t)〉 > 0,

a contradiction, too. Here we have used thatj(0) = 0. Therefore, we have

〈w∗(t), ẇ(t)〉 = j(ẇ(t)),

and consequently due to (4.2)
〈w∗(t), z〉 ≤ j(z), ∀z ∈ Z.

Second step3. ⇒ 1.
Insertingz− ẇ into the first equation of problem 3 instead ofz and using both other conditions of problem
3 we get immediately thatw is a solution of problem 1.

4.2 Remarks to the solvability of the doubly nonlinear problem

As we have seen the variational inequality (3.12) can be equivalently rewritten as follows:
For l ∈ H1([0, T ]), Z ′) find an elementw ∈ H1([0, T ], Z) with w(0) = 0, such that for almost all
t ∈ [0, T ]:

l(t) ∈ Aw(t) + ∂j(ẇ(t)), (4.3)

where∂j is the subdifferential of the functionalj. Since (4.3) is nonlinear inw and ẇ, this is called
a doubly nonlinear problem. In [8] one can find an existence theorem for a solution of the initial value
problem

f(t) ∈ Aw(t) + ∂Ψ(ẇ(t)), w(0) = w0. (4.4)

There the Rothe method is used, which we will explain shortly:
Let us consider an equidistant partition of[0, T ], namely,0 = t0 < t1 < t2 < · · · < tN = T ,
tn − tn−1 = k, k = T/N , n = 1, . . .N. We setfn = 1

k

∫ tn

tn−1

f(t) dt. This discretisation in time leads to
a semi-discrete recursive formulated problem for the unknownswn:

fn ∈ Awn + ∂Ψ(
wn − wn−1

k
), w(0) = w0. (4.5)
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Rothe solutionswk are defined by piecewise affine interpolation

wk(t) = wn−1 + δwn · (t − tn−1) for tn−1 < t ≤ tn, (4.6)

with

δwn =
△wn

k
=

wn − wn−1

k
. (4.7)

The following theorem is proved in [8], pp. 322-326,

Theorem 2. LetV ⊂ H ⊂ V ′ be a Gelfand’s tripel. Assume that the operatorA : V → V ′ can be splitted
asA = A1 + A2, whereA1 : V → V ′ is linear and selfadjoint,〈A1v, v〉 ≥ |v|2V , andA2 : H → H is
Lipschitz continuous. Suppose thatΨ : H → IR ∪ {+∞} is uniformly convex onH in the sense

〈ξ1 − ξ2, v1 − v2〉 ≥ c‖v1 − v2‖
2, ∀ξ1 ∈ ∂Ψ(v1), ∀ξ2 ∈ ∂Ψ(v2), (4.8)

and thatΨ is lower semicontinuous onV , proper and0 ∈ ∂Ψ(0). Furthermore, suppose thatV is
compactly imbedded inH . Moreover, letf ∈ H1([0, T ], H) andw0 ∈ V be a steady state tof(0) in
the sense thatA(w0) = f(0).

• Then the Rothe functionswk exist and belong toC([0, T ], V ) and we have the estimates

‖wk‖W 1,∞([0,T ],V ) ≤ C.

• There is a subsequence such thatwk → w weakly* in W 1,∞([0, T ], V ) and every suchw is a
solution fromH1([0, T ], V ) to the problem (4.4).

Now, we discuss, whether the assumptions of theorem 2 are satisfied for the operators occuring in our
problem (4.3).
The function spaces:
At the end of subsection 3.1 we have introduced the space

Z = V1 × V2 × Q1 × Q2,

where

V1 := {[H1(Ω)]3 : u|γD1
= 0},

V2 := {H1(Ω) : ϕ|γD2
= 0},

Q1 := [L2(Ω)]3×3,

Q2 := [L2(Ω)]3.

Furthermore, it was
H = [L2(Ω)]3 × L2(Ω) × [L2(Ω)]3×3 × [L2(Ω)]3.

Note that(Z, H, Z ′) is a Gelfand-triple. Now, we identifyZ with V and see that the condition,V is
compactly imbedded inH , is not satisfied. This can be repaired, if some additional regularity of the
solutions can be guaranteed, see Lemma 4.
The operators:
The operatorA was defined by (3.9) as a mapping fromZ → Z ′: A is decomposed into a linear part and a
nonlinear one, where the nonlinearity is generated by the electric enthalpyH . The linear part contains the
selfadjoint operator

〈A1w, z〉 =

∫

Ω

(cε(u) : ε(v) dx +

∫

Ω

ǫE(ϕ) · E(β) dx,

which isV -elliptic in Z, if the measures of the mechanical and electric boundary parts γD1
andγD2

are
positive. The remainding partA2 = A−A1 : H → H has to be Lipschitz continuous what can be realized
by a suitable choice of the electric enthalpyH .
The functionalΨ is identified with the dissipation functionalj. As we have already discussed in subsection
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3.2 the functionalj is lower semicontinuous onV , proper and0 ∈ ∂Ψ(0). Furthermore we have seen the
convexity ofj, but we could not show the uniform convexity (4.8).
In [5] existence and uniqueness results for a class of nonlinear hyteresis models for ferroelectric materials
are derived using the theory of viscoplasticity developed in [1]. But, in general it is an open problem,
for which class of electric enthalpies we will get the existence of a solutionw ∈ H1([0, T ], Z) for our
variational inequality. We concentrate on the linear case in what follows.

4.3 Solvabilty of the linear problem

We consider a simple form of the hardening termf(εr, P r) in the electric enthalpy in (2.27), setting

H =H(ε, εr, E, P r)

=
1

2
c(ε − εr) : (ε − εr) −

1

2
ǫE · E − E · e(P r)(ε − εr) − E · P r

+ 1
2H1ε

r : εr + 1
2H2P

r · P r,

(4.9)

whereH1 andH2 are positive definite tensors. Then the corresponding operator A generates a bilinear
form onZ × Z:

〈Aw, z〉 = a(w, z) =

∫

Ω

c(ε(u) − εr) : (ε(v) − q) + ǫE(ϕ) · E(β) dx

+

∫

Ω

e
⊤E(β) : (ε(u) − εr) − e

⊤E(ϕ) : (ε(v) − q) dx

+

∫

Ω

E(β) · P r − E(ϕ) · T dx +

∫

Ω

H1ε
r : q + H2P

r · T dx.

Note that the bilinear forma(·, ·) is not symmetric, that meansa(w, z) 6= a(z, w).
Analogously to (3.12) the simplified variational inequality reads:

For l ∈ H1([0, T ], Z ′) findw = (u, ϕ, εr, P r) ∈ H1([0, T ], Z) with w(0) = 0 such that for allz ∈ Z and
almost allt ∈ [0, T ] the following inequality is satisfied:

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈l(t), z − ẇ(t)〉. (4.10)

A similar variational problem for elasto-plasticity is analysed in [2], chapter 7, with the help of the Rothe
method. In [2] the elasto-plastic bilinear form is symmetric in contrast to our problem where a nonsym-
metric bilinear form occurs. This makes the proof more complicated, but we can follow the steps of the
proof of Theorem 7.3 in [2] in principle.

As before we start with an equidistant partition of[0, T ], 0 = t0 < t1 < t2 < · · · < tN = T , tn−tn−1 = k,
k = T/N andln = l(tn), which is well defined due to the embeddingH1([0, T ], Z ′) →֒ C([0, T ], Z ′).
We consider the semi-discrete problem:

Find {wn}n=0,...,N ⊂ Z with w0 = 0 such that

a(wn, z −△wn) + j(z) − j(△wn) ≥ 〈ln, z −△wn〉, ∀z ∈ Z. (4.11)

Here,△wn := wn − wn−1 andn = 1, . . . , N .
The existence of the set{wn}n=0,...,N ⊂ Z and appropriate estimates can be proved analogously to [2],
Lemma 7.1, p.160, by the following Lemma:

Lemma 2. For every set{ln}n=0,...,N ⊂ Z ′ with l0 = 0 there exists a uniquely determined set of solutions
of (4.11){wn}n=0,...,N ⊂ Z with w0 = 0 such that

1. j(△wn) < ∞.

2. There exists a constantc independent ofk with

‖△wn‖Z ≤ c‖△ln‖Z′ . (4.12)
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Furthermore it holds, compare [2], Lemma 7.2, p.161:

Lemma 3. Assume thatl ∈ H1([0, T ], Z ′) with l(0) = 0. Then the solution{wn}n=0,...,N defined in
Lemma 2 satisfies

max
1≤n≤N

‖wn‖Z ≤ c‖l̇‖L1([0,T ],Z′), (4.13)

N∑

n=1

k‖δwn‖
2
Z ≤ c̃‖l̇‖2

L2([0,T ],Z′), (4.14)

with δwn := △wn/k for n = 1, . . . , N .

Now, we can construct a Rothe sequence, defining on[0, T ] the piecewise linear function

wk(t) = wn−1 + δwn · (t − tn−1), for tn−1 ≤ t ≤ tn, 1 ≤ n ≤ N. (4.15)

It follows directly from (4.13) and (4.14)

‖wk‖L2([0,T ],Z) ≤ c0‖w
k‖L∞([0,T ],Z) ≤ c, (4.16)

‖ẇk‖L2([0,T ],Z) ≤ c, (4.17)

with a constantc , independent onk. Due to the fact that bounded sets in reflexive Banach spaces (here
H1([0, T ], Z)) are weakly sequentially compact we get immediately the following corollary:

Corollary 1. Assume thatl ∈ H1([0, T ], Z ′) with l(0) = 0. Then every sequence of time steps
(km)m∈N ⊂ R with km → 0 for m → ∞ has a subsequence , also denoted by(km)m∈N, such that

wkm ⇀ w in H1([0, T ], Z). (4.18)

All considerations are valid for both symmetric and nonsymmetric bilinear forms until now. In order to
show that the limit functionw from (4.18) is indeed a solution of the variational inequality (4.10) we need
the symmetry of the bilinear form as in [2] or an additional condition if the bilinear form is not symmetric.
Moreover, the dissipation functional should satisfy some conditions.

Theorem 3. Let l ∈ H1([0, T ], Z ′) with l(0) = 0. Suppose the sets of admissible stressesS = S(x)
for pointsx ∈ Ω are uniformly bounded. Then, the dissipation functional in(4.10)j : Z → R ∪ {±∞}
is non-negative, positively homogeneous, convex, proper und Lipschitz-continuous. The bilinear forma is
Z-elliptic, if |γDi

| > 0, i = 1, 2. Furthermore, if we assume that

lim inf
m→∞

∫ T

0

a(wkm(t), ẇkm (t)) dt ≥

∫ T

0

a(w(t), ẇ(t)) dt (4.19)

holds true, then the weak limit is a solution of problem (4.10).

Proof. The properties of the dissipation functional are proved in subsection 3.2.
Now, we adapt the proof of Theorem 7.3, p.166 in [2] to our case.

First step Introduction of step functions inZ.

We start with the discrete variational inequality (4.11).

a(wn, z̃ −△wn) + j(z̃) − j(△wn) ≥ 〈ln, z̃ −△wn〉, ∀z̃ ∈ Z. (4.20)

We divide (4.20) byk and due to the positive homogeneity ofj we get

a(wn, z − δwn) + j(z) − j(δwn) ≥ 〈ln, z − δwn〉, ∀z =
z̃

k
∈ Z. (4.21)
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Now, we indroduce the following set of step functionsz(t): For any sequence{zn}n=1...,N ⊂ Z and
zN+1=0 we put

z(t) = zn for tn−1 ≤ t < tn; n = 1, . . . , N − 1,

z(t) = zN for tN−1 ≤ t ≤ tN . (4.22)

Analogously we define the step function

z(t) =
zn + zn+1

2
for tn−1 ≤ t < tn; n = 1, . . . , N − 1,

z(t) =
zN

2
for tN−1 ≤ t ≤ tN . (4.23)

We insert (4.23) into (4.21), multiply byk and sum overn from 1 toN . Thus we get:

N∑

n=1

ka(wn,
(zn + zn+1)

2
− δwn) +

N∑

n=1

kj(
(zn + zn+1)

2
) −

N∑

n=1

kj(δwn)

≥
N∑

n=1

k〈ln,
(zn + zn+1)

2
− δwn〉. (4.24)

Second stepEstimates for the step functions.

We estimate the different terms in (4.24) by the Rothe interpolantwk(t), given by (4.15).
Integrating piecewise and merging the summands adequatelywe have forz, introduced by (4.22),

N∑

n=1

ka(wn,
(zn + zn+1)

2
) =

∫ T

0

a(wk(t), z(t)) dt. (4.25)

Moreover, exploiting theZ-ellipticity of the bilinear forma(w, z), that meansa(z, z) ≥ C‖z‖2
Z, we get

N∑

n=1

ka(wn, δwn) ≥

∫ T

0

a(wk(t), ẇk(t)) dt. (4.26)

Due to the convexity ofj the second sum can be estimated

N∑

n=1

kj(
(zn + zn+1)

2
) ≤

N∑

n=1

k

2
(j(zn) + j(zn+1)) =

∫ T

0

j(z(t)) dt −
k

2
j(z1). (4.27)

The third sum can be rewritten as

N∑

n=1

kj(δwn) =

∫ T

0

j(ẇk(t)) dt. (4.28)

It remains the estimate of the right hand side of (4.24). Analogously to (4.25) we get

N∑

n=1

k〈ln,
(zn + zn+1)

2
〉 =

∫ T

0

〈lk(t), z(t)〉 dt, (4.29)

wherelk(t) is the piecewise linear interpolant of{ln}n=0,...,N . Using the estimate (4.12) we have

N∑

n=1

k〈ln, δwn〉 =

∫ T

0

〈lk(t), ẇk(t)〉 dt +
1

2

N∑

n=1

〈△ln,△wn〉 ≤

∫ T

0

〈lk(t), ẇk(t)〉 dt +
c

2
‖△ln‖

2
Z′ .
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Now, due to Schwarz’ inequality it holds

‖△ln‖
2
Z′ ≤ (

∫ tn

tn−1

1 · ‖l̇(τ)‖Z′ dτ)2 ≤ k

∫ tn

tn−1

‖l̇(τ)‖2
Z′ dτ,

what leads finally to

N∑

n=1

k〈ln, δwn〉 ≤

∫ T

0

〈lk(t), ẇk(t)〉 dt + k

∫ T

0

‖l̇(τ)‖2
Z′ dτ. (4.30)

Using the estimates (4.25),. . . , (4.30) inequality (4.24) implies

∫ T

0

a(wk(t), z(t) − ẇk(t)) + j(z(t)) − j(ẇk(t)) − 〈lk(t), z(t) − ẇk(t)〉 dt

−
1

2
kj(z1) +

1

2
ck

∫ T

0

‖l̇(t)‖2
Z′ dt ≥ 0. (4.31)

Third step The limit inequality forwkm ⇀ w.

Corollary 1 guarantees that a subsequence{wkm} of {wk} exists which weakly converges inH1([0, T ], Z)
to the limit functionw. We insert such a subsequence into (4.31)

∫ T

0

a(wkm (t), z(t) − ẇkm(t)) + j(z(t)) − j(ẇkm(t)) − 〈lkm(t), z(t) − ẇkm(t)〉 dt

−
1

2
kmj(z1) +

1

2
ckm

∫ T

0

‖l̇(t)‖2
Z′ dt ≥ 0. (4.32)

It follows

lim sup
m→∞

{
∫ T

0

a(wkm (t), z(t) − ẇkm (t)) + j(z(t)) − j(ẇkm(t)) − 〈lkm(t), z(t) − ẇkm(t)〉 dt

}

≥ 0.

Due to the assumption (4.19), the weakly lower semicontinuity of j and the construction fromlkm as Rothe
sequence we get for any step function corresponding to the step sizeskm, m = 1, 2, . . . the limit inequality

∫ T

0

a(w(t), z(t) − ẇ(t)) + j(z(t)) − j(ẇ(t)) − 〈l(t), z(t) − ẇ(t)〉 dt ≥ 0. (4.33)

Fourth step Estimation of the integrand of (4.33).

Consider an arbitraryz ∈ L2([0, T ], Z). We can approximatez by its piecewise averaging step functions
zkm , corresponding to the time step-sizekm. Using the Lipschitz-continuity ofj, it follows that (4.33)
holds for anyz ∈ L2([0, T ], Z). For t0 ∈ (0, T ) andh > 0 with t0 + h < T we define for an arbitrary
z ∈ Z

z(t) =

{

z t0 ≤ t ≤ t0 + h,

ẇ(t) otherwise.

We can see easily thatz(t) ∈ L2([0, T ], Z). Inserting in (4.33) implies that

1

h

∫ t0+h

t0

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) − 〈l(t), z − ẇ(t)〉 dt ≥ 0.

Applying the Lebesgue theorem, see [2], Thm. 5.21, p. 123, weget forh → 0

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) − 〈l(t), z − ẇ(t)〉 ≥ 0,

which proves thatw is a solution of the original problem (4.10).
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Remark 2. If the bilinear forma is symmetric, estimate (4.19) is shown in [2] as follows:

lim inf
m→∞

∫ T

0

a(wkm(t), ẇkm (t)) dt = lim inf
m→∞

∫ T

0

1
2

d
dt

a(wkm (t), wkm (t)) dt

= lim inf
m→∞

1
2a(wkm (T ), wkm(T )) ≥ 1

2a(w(T ), w(T )) =

∫ T

0

a(w(t), ẇ(t)) dt.

Moreover, the uniqueness of the solution can be proved for symmetric bilinear forms, see [2], p.165.

If the solutions of the semi-discrete problem are sufficiently smooth with respect tox and if furthermore
∂Ω, l andl̇ are sufficiently smooth, then (4.19) is satisfied. We can proof the following Lemma:

Lemma 4. Define for0 < δ < 1

Zδ := [H1+δ(Ω)]3 × H1+δ(Ω) × [Hδ(Ω)]3×3
sym × [Hδ(Ω)]3.

Assume thatΩ has a smooth boundary. If there exists a constantc independent ofk such that for one
0 < δ < 1 the estimates

‖wk‖L2([0,T ],Zδ) ≤ c, (4.34)

‖ẇk‖L2([0,T ],Zδ) ≤ c (4.35)

hold true, estimate (4.19) is satisfied.

Proof. We have the compact imbedding
Zδ →֒→֒ Z,

see e.g. [13], Thm. 7.9, p. 123. Thus, we know that

H1([0, T ], Zδ) →֒→֒ L2([0, T ], Z),

see [9], Lemma 3.74 (Aubin, Lions), p. 121. Analogously to Corollary 1 it follows from (4.34) and (4.35)
that there exists a subsequence(km)m∈N of time steps and a functionw ∈ H1([0, T ], Zδ) such that

wkm ⇀ w in H1([0, T ], Zδ). (4.36)

Due to the compact imbeddings, it follows that

wkm → w in L2([0, T ], Z). (4.37)

Thus we get
∫ T

0

a(wkm(t), ẇkm (t)) dt =

∫ T

0

a(wkm(t) − w(t), ẇkm (t)) dt

+

∫ T

0

a(w(t), ẇkm (t)) dt

(4.38)

and
∫ T

0

a(wkm (t) − w(t), ẇkm (t)) dt ≤ c

∫ T

0

‖wkm(t) − w(t)‖Z‖ẇ
km(t)‖Z dt

≤ c‖wkm − w‖L2([0,T ],Z)‖ẇ
km‖L2([0,T ],Z).

(4.39)

Then, (4.37), (4.38) and (4.39) imply

lim
m→∞

∫ T

0

a(wkm(t), ẇkm (t)) dt =

∫ T

0

a(w(t), ẇ(t)) dt,

and this implies (4.19).

Remark 3. The condition thatΩ has a smooth boundary can be replaced by suitable cone properties.

We underline, that in [5] a symmetric piezoelectric operator is considered. There is proved the existence
and uniqueness of the linear problem. Whether this is indeedequivalent to our variatonal inequality should
be investigated.
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